Circular Motion

EXERCISES

Q. 1 (3)
$v=\mathrm{r} \omega \Rightarrow \omega=\frac{v}{\mathrm{r}}=$ constant [As v and r are constant]
Q. 2 (1)

In uniform circular motion (constant angular velocity) kinetic energy remains constant but due to change in velocity of particle its momentum varies.
Q. 3 (3)
$\omega_{\min }=\frac{2 \pi}{60} \frac{\mathrm{Rad}}{\mathrm{min}}$ and $\omega_{\mathrm{hr}}=\frac{2 \pi}{12 \times 60} \frac{\mathrm{Rad}}{\mathrm{min}}$
$\therefore \frac{\omega_{\min }}{\omega_{\mathrm{hr}}}=\frac{2 \pi / 60}{2 \pi / 12 \times 60}$
Q. 4 (4)
$120 \mathrm{rev} / \mathrm{min}=120 \times \frac{2 \pi}{60} \mathrm{rad} / \mathrm{sec}=4 \pi \mathrm{rad} / \mathrm{sec}$
Q. 5 (1)
$\omega=\frac{v}{r}=\frac{100}{100}=1 \mathrm{rad} / \mathrm{s}$
Q. 6 (2)

$$
\vec{v}=\vec{\omega} \times \overrightarrow{\mathrm{r}}=\left|\begin{array}{rrr}
\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\
3 & -4 & 1 \\
5 & -6 & 6
\end{array}\right|=-18 \hat{\mathrm{i}}-13 \hat{\mathrm{j}}+2 \hat{\mathrm{k}} .
$$

Q. 7 (3)
Q. 8 (3)

Centripetal acceleration $=\frac{v^{2}}{r}=$ constant. Direction keeps changing.
Q. 9 (1)

$$
\frac{\mathrm{a}_{\mathrm{R}}}{\mathrm{a}_{\mathrm{r}}}=\frac{\omega_{\mathrm{R}}^{2} \times \mathrm{R}}{\omega_{\mathrm{r}}^{2} \times \mathrm{r}}=\frac{\mathrm{T}_{\mathrm{r}}^{2}}{\mathrm{~T}_{\mathrm{R}}^{2}} \times \frac{\mathrm{R}}{\mathrm{r}}=\frac{\mathrm{R}}{\mathrm{r}}\left[\mathrm{As} \mathrm{~T}_{\mathrm{r}}=\mathrm{T}_{\mathrm{R}}\right]
$$

Q. 10 (3)
Q. 11 (4)

Centripetal force is constant in magnitude that means speed is constant and due to change in direction velocity is variable.
Q. 12 (1)

Force is perpendicular to $\overrightarrow{\mathrm{v}}$
$R=\frac{\mathrm{v}^{2}}{\mathrm{a}_{\perp}}$
$\Rightarrow \mathrm{R}=\frac{\mathrm{mv}^{2}}{\mathrm{~F}}$
Q. 13 (3)
$\mathrm{F}_{\mathrm{C} 1}=\mathrm{F}_{\mathrm{C} 2}$
$\Rightarrow \frac{\mathrm{mv}_{1}^{2}}{\mathrm{r}_{1}}=\frac{\mathrm{mv}_{2}^{2}}{\mathrm{r}_{2}}$
$\frac{\mathrm{v}_{1}}{\mathrm{v}_{2}}=\sqrt{\frac{\mathrm{r}_{1}}{\mathrm{r}_{2}}}=\frac{1}{\sqrt{2}}$
Q. 14 (2)
$|\vec{a}|=\sqrt{a_{c}^{2}+a_{t}^{2}}=\sqrt{\frac{v^{2}}{r^{2}}+a^{2}}$

Q. 15 (4)
Q. 16 (4)

$$
\frac{v^{2}}{\mathrm{rg}}=\frac{\mathrm{h}}{l}
$$

$$
\Rightarrow v=\sqrt{\frac{\mathrm{rgh}}{l}}=\sqrt{\frac{50 \times 1.5 \times 9.8}{10}}=8.57 \mathrm{~m} / \mathrm{s}
$$

Q. 17 (1)

Q. 18 (4)

$$
\mathrm{F}=\mathrm{mg}-\frac{\mathrm{m} v^{2}}{\mathrm{r}}
$$

Q. 19 (3)
$\mathrm{T}=$ tension, $\mathrm{W}=$ weight and $\mathrm{F}=$ centrifugal force.
Q. 20 (2)
$\mathrm{T}=\frac{\mathrm{mv}^{2}}{\mathrm{r}}$

$$
=\frac{0.5 \times(4)^{2}}{1}=8 \mathrm{~N}
$$

Q. 21 (1)

Q. 22 (4)

$$
\mathrm{v}_{\max }=\sqrt{\mu \mathrm{rg}}
$$

JEE-MAIN

OBJECTIVE QUESTIONS

Q. 1

Speed $v_{1}=\frac{2 \pi r}{t}$
$v_{2}=\frac{2 \pi r}{t}$
$\omega_{1}=\frac{\mathrm{v}_{1}}{\mathrm{r}}=\frac{2 \pi}{\mathrm{t}} \Rightarrow \omega_{2}=\frac{\mathrm{v}_{2}}{2 \mathrm{r}}=\frac{2 \pi}{\mathrm{t}}$
$\omega_{1}=\omega_{2} \Rightarrow \frac{\omega_{1}}{\omega_{2}}=\frac{1}{1}$

Q. 2 (3)

$\mathrm{r}=\frac{20}{\pi} \mathrm{~m}, \mathrm{a}_{\mathrm{t}}=\mathrm{constant}$
$\mathrm{n}=2^{\text {nd }}$ revolution
$\mathrm{v}=80 \mathrm{~m} / \mathrm{s}$
$\omega_{0}=0, \omega_{\mathrm{f}}=\frac{\mathrm{v}}{\mathrm{r}}=\frac{80}{20 / \pi}=4 \pi \mathrm{rad} / \mathrm{sec}$
$\theta=2 \pi \times 2=4 \pi$
from $3^{\text {rd }}$ equation
$\omega^{2}=\omega_{0}{ }^{2}+2 \alpha \theta$
$\Rightarrow \quad(4 \pi)^{2}=0^{2}+2 \times \alpha \times(4 \pi)$
$\alpha=2 \pi \mathrm{rad} / \mathrm{s}^{2}$
$a_{t}=\alpha r=2 \pi \times \frac{20}{\pi}=40 \mathrm{~m} / \mathrm{s}^{2}$
Q. 3 (4)

Speed $=$ constant
In uniform circular motion, velocity and acceleration are constant in magnitude but direction is changes. Therefore velocity and acceleration both change.
Q. 4 (4)
$\omega_{\text {second }}=\frac{2 \pi}{\mathrm{~T}}=\frac{2 \pi}{60} \mathrm{rad} / \mathrm{sec}$.
$\mathrm{v}=\omega \cdot \mathrm{r}=\frac{2 \pi}{60} \times 0.06 \mathrm{~m} / \mathrm{s}=2 \pi \mathrm{~mm} / \mathrm{s}$
$\Delta \vec{v}=\vec{v}_{f}-\vec{v}_{i}=\sqrt{2} v=2 \sqrt{2} \pi \mathrm{~mm} / \mathrm{s}$
Q. 5 (3)

Given, $\omega_{0}=0, \quad \mathrm{t}=2 \mathrm{sec}$.
$\theta=0$, next 2 sec., $\quad \theta=\mathrm{O}_{2}$
$\theta_{1}=\frac{1}{2} \alpha \mathrm{t}^{2}=\frac{1}{2} \alpha 2^{2}=2 \alpha$
$\theta_{2}=\frac{1}{2} \alpha(2+2)^{2}-\frac{1}{2} \alpha 2^{2}=6 \alpha$
$\frac{\theta_{2}}{\theta_{1}}=\frac{6 \alpha}{2 \alpha}=3$
Q. 6 (3)
$\omega_{1}=\frac{2 \pi}{\mathrm{~T}_{1}}, \quad \omega_{2}=\frac{2 \pi}{\mathrm{~T}_{2}}$
$\omega_{1}: \omega_{2}=\mathrm{T}_{2}: \mathrm{T}_{1}$
$\mathrm{T}_{1}=12 \times 60 \times 60 \mathrm{sec}$.
$\mathrm{T}_{2}=60 \mathrm{sec}$.
$\omega_{1}: \omega_{2}=60:(12 \times 60 \times 60)$
$\omega_{1}: \omega_{2}=1: 720$
Q. 7 (1)
$\omega=\frac{2 \pi}{\mathrm{t}}$
where $t=1$ Day $=24 \times 60 \times 60$ second because earth complete one revolution is 24 hours about its own axis
$\mathrm{w}=\left(\frac{2 \pi}{60 \times 60 \times 24}\right) \mathrm{rad} / \mathrm{s}$
Q. 8 (4)

Given
$\mathrm{a}=10 \mathrm{~m} / \mathrm{sec}^{2} \Rightarrow \alpha=5 \mathrm{rad} / \mathrm{sec}^{2}$
$a=\alpha r$
$\mathrm{r}=\frac{10}{5}=2 \mathrm{~m}$
Q. 9 (1)

Given $\omega_{0}=0, \omega=2 \pi \mathrm{n}=2 \pi \times \frac{210}{60} \frac{\mathrm{rad}}{\mathrm{sec}}$
from $\mathrm{t}=5$
$\omega=\omega_{0}+\alpha \mathrm{t}$
$2 \pi \times \frac{210}{60}=0+\alpha \times 5 \Rightarrow \alpha=1.4 \pi \frac{\mathrm{rad}}{\mathrm{sec}^{2}}$
Q. 10 (3)
$a_{c}=\frac{v^{2}}{r}$, radius is constant in case (a) and increase in case (b). So that magnitude of acceleration is constant in case (a) and decrease in case (b).
Q. 11 (2)
$\mathrm{a}_{\mathrm{c}}=\omega^{2} \mathrm{R}=\frac{4 \pi^{2}}{\mathrm{~T}^{2}} \mathrm{R}=\frac{4 \times 3.14^{2} \times 6400 \times 10^{5}}{(24 \times 60 \times 60)^{2}}$
$\omega^{2} \mathrm{R}=\frac{4 \pi^{2}}{\mathrm{~T}^{2}} \mathrm{R}=\frac{4 \times 3.14^{2} \times 6400 \times 10^{5}}{(24 \times 60 \times 60)^{2}}=3.4 \mathrm{~cm} / \mathrm{sec}^{2}$

Q. 12 (3)

Given $\mathrm{r}=25 \mathrm{~cm}, \mathrm{n}=2$
$\omega=2 \pi \times 2 \mathrm{rad} / \mathrm{s} \Rightarrow \mathrm{a}_{\mathrm{c}}=\omega^{2} \mathrm{r}$ $=(4 \pi)^{2} \times 0.25=16 \pi^{2} \times 0.25=4 \pi^{2}$
Q. 13 (1)

Slope should be decreasing
$\alpha=\frac{\mathrm{d} \omega}{\mathrm{dt}}=\tan \theta$, if $\theta \downarrow, \alpha \downarrow$

Q. 14 (3)

Given
$\omega=\theta^{2}+2 \theta$
$\frac{\mathrm{d} \omega}{\mathrm{d} \theta}=2 \theta+\left.2 \Rightarrow \frac{\mathrm{~d} \omega}{\mathrm{~d} \theta}\right|_{\mathrm{t}=1}=2 \theta+2=4$
$\alpha=\frac{\omega \mathrm{d} \omega}{\mathrm{d} \theta}=\left(\theta^{2}+2 \theta\right) \cdot(2 \theta+2)=12 \mathrm{rad} / \mathrm{sec}^{2}$

Q. 15 (2)

We know that
$v \leq \sqrt{\mu \mathrm{rg}}$
$v \leq \sqrt{0.64 \times 20 \times 9.8}$
$v \leq 11.2 \mathrm{~m} / \mathrm{s}$
Q. 16 (4)
$\mathrm{r}=144 \mathrm{~m}, \mathrm{~m}=16 \mathrm{~kg}, \mathrm{~T}_{\max }=16 \mathrm{~N}$
$\mathrm{T}=\frac{\mathrm{mv}}{\mathrm{r}} \mathrm{r}$
$\mathrm{v}=\sqrt{\frac{\operatorname{Tr}}{\mathrm{M}}}=\sqrt{\frac{16 \times 144}{16}}=12 \mathrm{~m} / \mathrm{s}$

Q. 17 (4)

$\mathrm{T}=\mathrm{m} \omega^{2} \mathrm{r}$
$\Rightarrow \mathrm{T}^{1}=2 \mathrm{~T}=\mathrm{m} \omega_{1}{ }^{2} \mathrm{r}$
$\omega_{1}=\sqrt{2} \omega=\sqrt{2} \times 5=\sqrt{50} \sim 7 \mathrm{rev} / \mathrm{min}$

Q. 18 (1)

Uniformly rotating turn table means angular velocity is constant. New radius is half of the original value.

$$
\begin{aligned}
& \mathrm{r}^{\prime}=2 \mathrm{r} \text { and } \omega=\text { constant } \\
& \mathrm{v}^{\prime}=\omega \mathrm{r}^{\prime}=2 \omega \mathrm{r}=2 \mathrm{v}=20 \mathrm{~cm} / \mathrm{s} \\
& \mathrm{a}^{\prime}=\omega^{2} \mathrm{r}^{\prime}=2 \omega^{2} \mathrm{r}=2 \mathrm{a}=20 \mathrm{~cm} / \mathrm{s}^{2}
\end{aligned}
$$

Q. 19 (3)

For just slip $\Rightarrow \mu \mathrm{mg}=\mathrm{m} \omega^{2} \mathrm{r}$
here ω is double then radius is $1 / 4^{\text {th }}$ $\mathrm{r}^{\prime}=4 \mathrm{~cm}$
Q. 20 (2)

We know the Tension provides necessary centripetal force
So $T=m \omega^{2} \ell$
Given $\mathrm{m}=0.1, \omega=2 \pi \times \frac{19}{\pi}$
$\ell=1 \Rightarrow \mathrm{~T}=\mathrm{m} \omega^{2} \ell$
$\mathrm{T}=0.1 \times\left(2 \pi \times \frac{10}{\pi}\right)^{2} \times 1$
$=0.1 \times 4 \pi^{2} \times \frac{100}{\pi^{2}} \times 1=40 \mathrm{~N}$
Q. 21 (3)

At $\mathrm{t}=0$,
$\mathrm{a}_{\perp}=\mathrm{g} \cos \theta$,
$R=\frac{v^{2}}{a_{\perp}}=\frac{u^{2}}{g \cos \theta}$
Q. 22 (2)

Let the car looses the contact at angle θ with vertical

$m g \cos \theta-N=\frac{m v^{2}}{R} \Rightarrow N=m g \cos \theta-\frac{m v^{2}}{R}$
During descending on overbridge θ is incerese. So $\cos \theta$ is decrease therefore normal reaction is decrease.
Q. 23 (4)

For circular motion in vertical plane normal reaction is minimum at highest point and it is zero, minimum speed of motorbike is -
$\mathrm{mg}=\frac{\mathrm{mv}}{} \mathrm{R}^{2} \Rightarrow \mathrm{v}=\sqrt{\mathrm{gR}}$
Q. 24 (1)
$\mathrm{T}-\mathrm{mg}=\frac{\mathrm{mv}^{2}}{\mathrm{r}}$ (centripetal force at lowest point)
$\mathrm{T}=\frac{\mathrm{mv}^{2}}{\mathrm{r}}+\mathrm{mg}$
Q. 25 (2)

For normal reaction at points A and B .

$$
\begin{aligned}
& \mathrm{mg}-\mathrm{N}=\frac{\mathrm{mv}^{2}}{\mathrm{r}} \\
& \mathrm{~N}=\mathrm{mg}-\frac{\mathrm{mv}^{2}}{\mathrm{r}}
\end{aligned}
$$

$\Rightarrow \mathrm{N}_{\mathrm{A}}>\mathrm{N}_{\mathrm{B}}$ and normal reaction at C is $\mathrm{N}_{\mathrm{C}}=\mathrm{mg}$, so $\mathrm{N}_{\mathrm{C}}>\mathrm{N}_{\mathrm{A}}>\mathrm{N}_{\mathrm{B}}$
Q. 26 (3)

Car will not slip when moving with speed v
Q. 27 (1)

$\mu \mathrm{mg} \geq \frac{\mathrm{mv}^{2}}{\mathrm{R}}$
$0.5 \mathrm{mg} \geq \mathrm{m} \times(5)^{2} \times \mathrm{R}$
$\frac{0.5 \times 10}{25} \geq \mathrm{R}$
$\mathrm{R} \leq 0.2 \mathrm{~m}$
Q. 28 (3)

Given
$\mathrm{R}=10 \mathrm{~m}$
$\mathrm{m}=500 \mathrm{~kg}$
$\mathrm{N}=\mathrm{m} \omega^{2} \mathrm{R}+\mathrm{mg}$
$=\frac{\mathrm{mv}^{2}}{\mathrm{R}}+\mathrm{mg}=\frac{500 \times 400}{10}+500 \times 10$
$=25 \mathrm{kN}$
Q. 29 (3)
$\mathrm{v}=\sqrt{\mathrm{Rg} \tan \theta}$
$\mathrm{R}=10 \sqrt{3} \mathrm{~m}, \quad \theta=30^{\circ}$
$=\sqrt{10 \sqrt{3} \times 10 \times \frac{1}{\sqrt{3}}}=10 \mathrm{~m} / \mathrm{sec}=36 \mathrm{~km} / \mathrm{hr}$

Q. 30 (2)

Here required centripetal force is provided by friction force. Due to lack of sufficient centripetal force car thrown out of the road in taking a turn.
Q. 31 (4)

In uniform circular motion
Force is towards centre

Q. 32 (2)

Given

$\mathrm{P}=\frac{2 \pi}{\omega} \Rightarrow \omega^{-1}=\frac{\mathrm{P}}{2 \pi}$
$\mathrm{T}=2 \mathrm{M} \omega^{2} \mathrm{~d}=\frac{8 \pi^{2} \mathrm{Md}}{\mathrm{P}^{2}}$
Q. 33 (1)

The maximum bearable Tension
$\mathrm{T}=\frac{\mathrm{mv}}{} \mathrm{l}^{2}$
$\mathrm{T}_{\text {max }}=10 \mathrm{~N}$,
$\mathrm{m}=1, \quad \mathrm{v}=?, \mathrm{l}=1$
$v=\sqrt{\frac{\mathrm{Tl}}{\mathrm{m}}}=\sqrt{\frac{100 \times 1}{1}}=10 \mathrm{~m} / \mathrm{s}$
Q. 34 (3)

At highest point velocity is zero.
After word it fall freely.

$$
\begin{aligned}
& \mathrm{r}=\ell \sin \theta \\
& \mathrm{T} \sin \theta=\mathrm{mw}^{2} \ell \\
& \mathrm{~T} \cos \theta=\mathrm{mg}
\end{aligned}
$$

Q. 36 (3)

Given that
$\mathrm{v}=72 \mathrm{~km} / \mathrm{h}$., $\mathrm{r}=80 \mathrm{~m}$
We know that
$\tan \theta=\frac{\mathrm{v}^{2}}{\mathrm{rg}}=\frac{20 \times 20}{80 \times 10}=\frac{1}{2}$
$\theta=\tan ^{-1}\left(\frac{1}{2}\right)$

Q. 37 (3)

We know that
$v^{2}=r g \tan \theta(\theta$ is same $) \Rightarrow v^{2}=r g$

Case 1

$\mathrm{r}_{1}=20 \mathrm{~m}, \mathrm{v}_{1}=\mathrm{v}$
$\mathrm{r}_{2}=\mathrm{r}, \mathrm{v}_{2}=1.1 \mathrm{v}$
$\frac{v_{2}^{2}}{v_{1}^{2}}=\frac{r_{2} g}{r_{1} g} \Rightarrow \frac{(1.1 v)^{2}}{v^{2}}=\frac{r_{2}}{r_{1}}$
$1.21=\frac{r}{20} \Rightarrow r=24.2 \mathrm{~m}$

JEE-ADVANCED

OBJECTIVE QUESTIONS

Q. 1 (C)
$\theta_{\mathrm{A}} \propto \mathrm{t}^{2}$

$$
\theta_{\mathrm{B}} \propto \mathrm{t}
$$

$\theta_{\mathrm{A}}^{\mathrm{A}}=\mathrm{k}_{1} \mathrm{t}^{2}$

$$
\theta_{\mathrm{B}}^{\mathrm{D}}=\mathrm{k}_{2} \mathrm{t}
$$

From given conditon calculate k_{1} and k_{2}
$2 \pi=\mathrm{k}_{1} \times \pi$
$\pi=\mathrm{k}_{2} \times 4 \pi$
$\mathrm{k}_{1}=2$
$\mathrm{k}_{2}=1 / 4$
$\theta_{\mathrm{A}}=2 \mathrm{t}^{2}$
$\theta_{\mathrm{B}}=\mathrm{t} / 4$
$\mathrm{w}_{\mathrm{A}}=\frac{\mathrm{d} \theta_{\mathrm{A}}}{\mathrm{dt}}=4 \mathrm{t} \quad \mathrm{w}_{\mathrm{B}}=\frac{\mathrm{d} \theta_{\mathrm{B}}}{\mathrm{dt}}=\frac{1}{4}$
$\left(\frac{\mathrm{d} \theta_{\mathrm{A}}}{\mathrm{dt}}\right)_{\mathrm{t}=5 \mathrm{sec}}=20\left(\frac{\mathrm{~d} \theta_{\mathrm{B}}}{\mathrm{dt}}\right)_{\mathrm{t}=5 \sec }=\frac{1}{4}$
$\omega_{\mathrm{A}}: \omega_{\mathrm{B}}=80: 1$
Q. 2 (D)
$\omega_{\mathrm{QP}}=2 \pi-5 \pi=-3 \pi \mathrm{rad} / \mathrm{s}$
$\omega_{\mathrm{RP}}=3 \pi-5 \pi=-2 \pi \mathrm{rad} / \mathrm{s}$
Time when Q particle reaches at $\mathrm{P}=\mathrm{t}_{1}=\frac{\pi / 2}{3 \pi}=\frac{1}{6}$
sec.

$$
\begin{aligned}
& \mathrm{t}_{2}=\frac{5 \pi / 2}{3 \pi}=\frac{5}{6} \mathrm{sec} \\
& \mathrm{t}_{3}=\frac{9 \pi / 2}{3 \pi}=\frac{3}{2} \mathrm{sec}
\end{aligned}
$$

Time where R particle reaches at $\mathrm{P} . \mathrm{t}_{1}=\frac{\pi}{2 \pi}=\frac{1}{2} \mathrm{sec}$.

$$
\mathrm{t}_{2}=\frac{3 \pi}{2 \pi}=\frac{3}{2} \mathrm{sec}
$$

Common time to reaches at P is $\frac{3}{2} \mathrm{sec}$.

Q. 3 (D)

w.r.t to P

$\mathrm{v}_{\perp \text { rel }}=8 \sin 30^{\circ}+6 \sin 30^{\circ}=7 \mathrm{~m} / \mathrm{s}$
$\omega=\frac{\mathrm{v}_{\perp \text { rel }}}{\mathrm{R}}=\frac{7}{10}=0.7 \mathrm{rad} / \mathrm{sec}$
Q. 4 (D)
$P Q=\sqrt{(a-a \cos \omega t)^{2}+(a \sin \omega t)^{2}}$

$$
=2 \mathrm{a} \sin \left(\frac{\omega \mathrm{t}}{2}\right)
$$

Q. 5 (i) (A), (ii) (A)
(i) At any moment $a_{t}=a_{r}$

$$
\begin{aligned}
& a_{t}=-\frac{v^{2}}{R} \\
& v \frac{d v}{d s}=-\frac{v^{2}}{R} \Rightarrow \frac{d v}{v}=-\frac{1}{R} d s
\end{aligned}
$$

After integration $\log \mathrm{v}=-\frac{\mathrm{S}}{\mathrm{R}}+\mathrm{C}$
at $\mathrm{t}=0, \mathrm{~s}=0, \mathrm{v}=\mathrm{v}_{0}$
$\mathrm{C}=\log \mathrm{v}_{0}$
from eq. (1) $\log \left(\frac{v}{v_{0}}\right)=-\frac{S}{R}$

$$
v=v_{0} e^{-S / R}
$$

(ii) At any moment $a_{t}=a_{v} a=\sqrt{2} a_{r}=\sqrt{2} \cdot \frac{v^{2}}{R}$
Q. 6 (A)

It can be observed that component of acceleration perpendicular to velocity is

$$
\mathrm{a}_{\mathrm{c}}=4 \mathrm{~m} / \mathrm{s}^{2}
$$

$\therefore \quad$ radius $=\frac{\mathrm{v}^{2}}{\mathrm{a}_{\mathrm{c}}}=\frac{(2)^{2}}{4}=1 \mathrm{~m}$.
Q. 7 (B)
$\mathrm{F}_{\mathrm{C}}=\mathrm{mk}^{2} \mathrm{rt}^{2}$
$a_{C}=k^{2} \mathrm{rt}^{2}=\frac{\mathrm{v}^{2}}{\mathrm{r}}$
$\Rightarrow \mathrm{v}=\mathrm{krt}$
$a_{t}=\frac{d v}{d t}=k r$
$\mathrm{F}_{\mathrm{t}}=\mathrm{mkr}$

$$
\begin{aligned}
& \Rightarrow P=\vec{F} \cdot \vec{v} \quad\left(\because \overrightarrow{\mathrm{~F}}_{\mathrm{C}} \cdot \overrightarrow{\mathrm{v}}=0\right) \\
& \mathrm{P}=\overrightarrow{\mathrm{F}}_{\mathrm{t}} \cdot \overrightarrow{\mathrm{v}}=\mathrm{mkr} \times \mathrm{krt} \\
& =\mathrm{mk}^{2} \mathrm{r}^{2} \mathrm{t}
\end{aligned}
$$

Q. 8 (B)
$\mathrm{K}=\frac{1}{2} \mathrm{mv}^{2}=\mathrm{as}^{2} \Rightarrow \mathrm{v}^{2}=\frac{2 \mathrm{as}^{2}}{\mathrm{~m}}$
$\mathrm{a}_{\mathrm{C}}=\frac{\mathrm{v}^{2}}{\mathrm{R}}=\frac{2 \mathrm{as}^{2}}{\mathrm{mR}}$
$\mathrm{a}_{\mathrm{t}}=\mathrm{v} \frac{\mathrm{dv}}{\mathrm{ds}}=\frac{2 \mathrm{as}}{\mathrm{m}}$
$a=\sqrt{\left(\frac{2 \mathrm{as}^{2}}{\mathrm{mR}}\right)^{2}+\left(\frac{2 \mathrm{as}}{\mathrm{m}}\right)^{2}}=\frac{2 \mathrm{as}}{\mathrm{m}}\left(1+\frac{\mathrm{s}^{2}}{\mathrm{R}^{2}}\right)^{1 / 2}$
Total force $=\mathrm{ma}=2 \mathrm{as}\left(1+\frac{\mathrm{s}^{2}}{\mathrm{R}^{2}}\right)^{1 / 2}$

Q. 9 (B)

Given $\mathrm{v}=\mathrm{a} \sqrt{\mathrm{s}}$
$a_{t}=\frac{v d v}{d s}=a \sqrt{s} \cdot \frac{a}{2 \sqrt{s}}=\frac{a^{2}}{2}$

$a_{r}=\frac{v^{2}}{R}=\frac{a^{2} s}{R}$
$\tan \alpha=\frac{\mathrm{a}_{\mathrm{r}}}{\mathrm{a}_{\mathrm{t}}}=\frac{2 \mathrm{~s}}{\mathrm{R}}$
Q. 10 (D)

$\frac{\mathrm{r}}{2}=\mathrm{R} \cos \theta$
$\mathrm{r}=2 \mathrm{R} \cos \theta$
After differentiable
$\frac{\mathrm{dr}}{\mathrm{dt}}=-2 \mathrm{R} \sin \theta \frac{\mathrm{d} \theta}{\mathrm{dt}} \Rightarrow \frac{\mathrm{dr}}{\mathrm{dt}}=\mathrm{v}_{\mathrm{rad}}=\mathrm{v} \sin \theta$
$\frac{d \theta}{d t}=\omega(-$ ve because θ decreasing)
$\mathrm{v} \sin \theta=2 \mathrm{R} \sin \theta \omega$
$\mathrm{v}=2 \mathrm{R} \omega=0.4 \mathrm{~m} / \mathrm{s}$
$\mathrm{a}=\sqrt{\mathrm{a}_{\mathrm{t}}^{2}+\mathrm{a}_{\mathrm{r}}^{2}} \therefore \omega=\mathrm{constant}$
$\Rightarrow \mathrm{a}=\mathrm{a}_{\mathrm{r}}=\frac{\mathrm{v}^{2}}{\mathrm{R}}$
$\Rightarrow \mathrm{a}_{\mathrm{t}}=0$
$\Rightarrow \mathrm{a}_{\mathrm{r}}=\frac{\mathrm{V}^{2}}{\mathrm{R}}=32 \mathrm{~m} / \mathrm{s}^{2}$
Q. 11 (C)

$$
\begin{aligned}
& a_{t}=\sqrt{3} t \\
& \int d V=\int \sqrt{3} t d t \\
& v=\frac{\sqrt{3} t^{2}}{2} \\
& \tan 30^{\circ}=\frac{\sqrt{3} t \cdot R}{\left(\frac{\sqrt{3} t^{2}}{2}\right)^{2}} \Rightarrow \frac{1}{\sqrt{3}}=\frac{4 t}{\sqrt{3} t^{4}} \\
& \Rightarrow t^{4}=4 t \Rightarrow t^{3}=(2)^{2} \\
& \Rightarrow t=2^{2 / 3} \sec
\end{aligned}
$$

Q. 12 (D)

Given

$$
\begin{aligned}
& \frac{\mathrm{MV}^{2}}{\mathrm{R}}=\mathrm{T} \\
& \mathrm{~T}_{\max }=16 \mathrm{~N} \\
& \mathrm{v}_{\max }=\sqrt{\frac{\mathrm{RT}}{\mathrm{~m}}} \Rightarrow \mathrm{v}_{\max }=\sqrt{\frac{16 \times 144}{16}}=12 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Q. 13 (A)

$\mathrm{v}=\mathrm{r} \omega$
If $r \rightarrow r / 2$
$\therefore \mathrm{v}^{\prime}=\frac{\mathrm{v}}{2}=\frac{20}{2}=10 \mathrm{~cm} / \mathrm{sec}$
Turn table rotating uniformly $a_{t}=0$

$$
a_{r}=\frac{v^{2}}{R} ; a_{r}^{\prime}=\frac{v^{\prime 2}}{R / 2}=\frac{20}{2}=10 \mathrm{~cm} / \mathrm{s}^{2}
$$

Q. 14 (A)

$\mathrm{T}_{1}-\mathrm{T}_{2}=\frac{\mathrm{M}}{2} \omega^{2} \frac{\mathrm{~L}}{2}$
$\mathrm{T}_{1}>\mathrm{T}_{2}$

Q. 15 (C)

For water does not fall at topmost point of path that means at topmost point N should be greater than or equal to zero.
for $\mathrm{N}=0, \mathrm{mg}=\frac{\mathrm{mv}^{2}}{\mathrm{r}}$
and \quad for $\mathrm{N}>0, \mathrm{mg}<\frac{\mathrm{mv}^{2}}{\mathrm{r}}$
so that mg is not greater than $\frac{\mathrm{mv}^{2}}{\mathrm{r}}$

Q. 16 (A)

When train A moves form east to west

$$
\begin{aligned}
& m g-N_{1}=\frac{m(v+\omega R)^{2}}{R} \\
\Rightarrow \quad & N_{1}=m g-\frac{m(v+\omega R)^{2}}{R} \\
& N_{1}=F_{1}
\end{aligned}
$$

When train B moves from west to east

$$
m g-N_{2}=\frac{m(v-\omega R)^{2}}{R} \Rightarrow N_{2}=m g-
$$

$$
\frac{m(v-\omega R)^{2}}{R}
$$

$$
\mathrm{N}_{2}=\mathrm{F}_{2}
$$

$$
\mathrm{F}_{1}>\mathrm{F}_{2}
$$

Q. 17 (A)

$$
m g=m \omega^{2} R, \omega=\sqrt{\frac{g}{R}}
$$

Q. 18 (D) $\mathrm{v}=72 \mathrm{~km}=20 \mathrm{~m} / \mathrm{s}, \mathrm{r}=20 \mathrm{~m}, \mathrm{~g}=10 \mathrm{~m} / \mathrm{s}^{2}$ To avoid skiding θ must be greater than

$$
\begin{aligned}
& \theta=\tan ^{-1}\left(\frac{\mathrm{v}^{2}}{\mathrm{rg}}\right)=\tan -1\left(\frac{20 \times 20}{20 \times 10}\right) \\
& \theta=\tan ^{-1}(4)
\end{aligned}
$$

Q. 19 (C)

The time taken to fall on ground $=\sqrt{\frac{2 \times 1.8}{9.8}}=\sqrt{\frac{36}{98}}$ velocity at time of string breaks
$\mathrm{v}=\frac{\text { distance }}{\text { time }} \Rightarrow \mathrm{v}=9.1 \sqrt{\frac{98}{36}}$
Centripetal acceleration $=\frac{\mathrm{v}^{2}}{\mathrm{R}}=\frac{9.1 \times 9.1 \times 98}{1.2 \times 36}$
$=187.856=188 \mathrm{~m} / \mathrm{s}^{2}$
Q. 20 (D)

For M to be stationary

$$
\begin{equation*}
\mathrm{T}=\mathrm{Mg} \tag{1}
\end{equation*}
$$

Also for mass m,
$\mathrm{T} \cos \theta=\mathrm{mg}$
$\mathrm{T} \sin \theta=\frac{\mathrm{mv}^{2}}{\ell \sin \theta}$
dividing (3) by (2)

$$
\tan \theta=\frac{\mathrm{v}^{2}}{\mathrm{~g} \ell \sin \theta}
$$

$\Rightarrow \mathrm{v}=\sqrt{\frac{\mathrm{g} \ell}{\cos \theta}} \cdot \sin \theta$
Time period $=\frac{2 \pi \mathrm{R}}{\mathrm{v}}=\frac{2 \pi \ell \sin \theta}{\sqrt{\frac{\mathrm{~g} \ell}{\cos \theta}} \cdot \sin \theta}$
From (1) and (2) $\cos \theta=\frac{m}{M}$
then time period $=2 \pi \sqrt{\frac{\ell \mathrm{~m}}{\mathrm{gM}}}$
Q. 21 (D)
$\omega=$ const., for all three particles

$\omega=\frac{\mathrm{v}}{3 \ell}$
$\mathrm{T}_{\mathrm{C}}=\mathrm{m} \omega^{2} 3 \ell$
$\mathrm{T}_{\mathrm{B}}-\mathrm{T}_{\mathrm{C}}=\mathrm{m} \omega^{2} 2 \ell$
$\mathrm{T}_{\mathrm{B}}=5 \mathrm{~m} \omega^{2} \ell$
$\mathrm{T}_{\mathrm{A}}-\mathrm{T}_{\mathrm{B}}=\mathrm{m} \omega^{2} \ell$
$\mathrm{T}_{\mathrm{A}}=6 \mathrm{~m} \omega^{2} \ell$
$\mathrm{T}_{\mathrm{C}}: \mathrm{T}_{\mathrm{B}}: \mathrm{T}_{\mathrm{A}}:: 3: 5: 6$

Q. 22 (B)

$\mathrm{F}=\mathrm{kx}, \mathrm{T}_{1}=\mathrm{ka}=\mathrm{m} \omega^{2} 2 \mathrm{a}$
$\Rightarrow \omega=\sqrt{\frac{\mathrm{k}}{2 \mathrm{~m}}}$
Time period $=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{2 \mathrm{~m}}{\mathrm{k}}}=\mathrm{T}$
$\mathrm{T}_{2}=2 \mathrm{ka}=\mathrm{m} \omega^{2} 3 \mathrm{a}$
$\Rightarrow \omega=\sqrt{\frac{2 \mathrm{k}}{3 \mathrm{~m}}}$
Time period $=2 \pi \sqrt{\frac{3 \mathrm{~m}}{2 \mathrm{k}}}=\mathrm{T}^{\prime}$
$\mathrm{T}^{\prime}=\left(\frac{\sqrt{3}}{2}\right) \mathrm{T}$

Q. 23 (B)

In uniform circular motion resultant horizontal force on the car must be towards the centre of circular path.

Q. 24 (A)

As we know :
$\mathrm{a}_{\mathrm{C}}=\frac{\mathrm{v}^{2}}{\mathrm{R}}$ (centripetal acceleration)
From figure : $g \sin \theta=\frac{v^{2}}{R}$

$$
\begin{aligned}
& \Rightarrow g \cdot \frac{v_{0}}{v}=\frac{v^{2}}{R}\left(\text { since } \sin \theta_{i}=\frac{v_{0}}{v}\right) \\
& \Rightarrow R \alpha v^{3}
\end{aligned}
$$

Q. 25 (A)

Maximum retardation $\mathrm{a}=\mu \mathrm{g}$
For apply brakes sharply minimum distance require to stop.
$0=\mathrm{V}^{2}-2 \mu \mathrm{gs}$
$\Rightarrow \quad \mathrm{s}=\frac{\mathrm{v}^{2}}{2 \mu \mathrm{~g}}$
For taking turn minimum radius is
$\mu \mathrm{g}=\frac{\mathrm{v}^{2}}{\mathrm{r}}$,
$\Rightarrow r=\frac{v^{2}}{\mu g}$, here r is twice of s
so apply brakes sharply is safe for driver.
Q. 26 (B)
$\mathrm{kx}=\mathrm{m} \omega^{2} \mathrm{r}$

$\mathrm{kx}=\mathrm{m} \omega^{2}(l+\mathrm{x})$
$\mathrm{x}=\frac{\mathrm{m} \omega^{2} \ell}{\mathrm{k}-\mathrm{m} \omega^{2}}$

Q. 27 (C)

The acceleration vector shall change the component of velocity $\mathrm{u}_{\|}$along the acceleration vector.
$r=\frac{v^{2}}{a_{n}}$
Radius of curvature $r_{\text {min }}$ means v is minimum and a_{n} is maximum. This is at point P when component of velocity parallel to acceleration vector becomes zero, that is $u_{\|}=0$. $\mathrm{u}_{\|}=0$

$\therefore \quad \mathrm{R}=\frac{\mathrm{u}_{\perp}^{2}}{\mathrm{a}}=\frac{4^{2}}{2}=8$ meter.
Q. 28 (C)
$2 \mathrm{~T} \sin \frac{\mathrm{~d} \theta}{2}=\operatorname{Rd} \theta \lambda \omega^{2} \mathrm{R}$
If $\mathrm{d} \theta$ is small

$\sin \frac{d \theta}{2} \simeq \frac{d \theta}{2}$
$2 \mathrm{~T} \frac{\mathrm{~d} \theta}{2}=\operatorname{Rd} \theta \lambda \omega^{2} \mathrm{R}$
$T=\lambda \omega^{2} R^{2}$
Q. 29 (D)

$(T+d T)-T=\frac{m}{\ell} w^{2} x d x$
$\mathrm{dT}=\frac{\mathrm{m}}{\ell} \cdot \omega^{2} \mathrm{xdx}$
Integrate with limit x to ℓ
$\mathrm{T}=\int_{\mathrm{x}}^{\ell} \frac{\mathrm{m}}{\ell} \omega^{2} \mathrm{xdx}$
$\mathrm{T}=\frac{\mathrm{m} \omega^{2}}{\ell}\left[\frac{\mathrm{x}^{2}}{2}\right]_{\mathrm{x}}^{\ell} \quad=\frac{1}{2} \frac{\mathrm{~m} \omega^{2}}{\ell}\left[\ell^{2}-\mathrm{x}^{2}\right]$
Q. 30 (B)

T for simple pendulum $=2 \pi \sqrt{\frac{\ell}{\mathrm{~g}}}$

For conical pendulum
$\mathrm{T} \sin \theta=\mathrm{m} \omega^{2} l \sin \theta$
$\Rightarrow \mathrm{T}=\mathrm{m} \omega^{2} l$
and $\mathrm{T} \cos \theta=\mathrm{mg}$
$\Rightarrow \mathrm{T}=\frac{\mathrm{mg}}{\cos \theta}$
Now, $\frac{\mathrm{g}}{\cos \theta}=\omega^{2} l$
$\Rightarrow \omega=\sqrt{\frac{\mathrm{g}}{l \cos \theta}}$
$\therefore \mathrm{T}=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{\ell \cos \theta}{\mathrm{~g}}}$
$\therefore \frac{\mathrm{T}_{\text {conical Pendulum }}}{\mathrm{T}_{\text {simple Pendulum }}}=2 \pi \sqrt{\frac{\ell}{\mathrm{~g}} \cos \theta} \times \sqrt{\frac{\mathrm{g}}{\ell}} \times \frac{1}{2 \pi}$
Ratio $=\sqrt{\cos \theta}$

Q. 31 (B)

Tangential acceleration $=a_{t}=g \sin \theta$

711/777

Normal acceleration $=a_{n}=g \cos \theta$
$a_{t}=a_{n}$
$g \sin \theta=g \cos \theta \Rightarrow \theta=45^{\circ}$
$\Rightarrow \mathrm{v}_{\mathrm{y}}=\mathrm{v}_{\mathrm{x}}$
$\mathrm{u}_{\mathrm{y}}-\mathrm{gt}=\mathrm{u}_{\mathrm{x}}$
$20-(10) \mathrm{t}=10$
$\mathrm{t}=1 \mathrm{sec}$.
During downward motion
$a_{t}=a_{n}$
$\mathrm{v}_{\mathrm{y}}=-\mathrm{v}_{\mathrm{x}}$
$20-10 \mathrm{t}=-10 \Rightarrow \mathrm{t}=3 \mathrm{sec}$.

JEE-ADVANCED

MCQ/COMPREHENSION/COLUMN MATCHING

 Q. 1 (B,D)(B) There are other forces on the particle
(D) The resultant of the other forces varies in magnitude as well as in direction.
Q. 2 (A, C, D)

In curved path, may be circular or parabolic.
In circular path speed and magnitude of acceleration are constant.
In parabolic path acceleration is constant.
Q. 3 (A,D)
(A) During a period of 1 year displacement is equal to zero, so that average velocity is equal to zero.
(B) During a period of one year distance travel is not equal to zero. So that average speed is not equal to zero.
(C) During a period of first 6 month of the year change in velocity not equal to zero. So that average acceleration is not equal to zero.
(D) In uniform circular motion instantaneous acceleration is act towards centre of circular path.
Q. 4 (B,C,D,E)
$\mathrm{v}=\sqrt{\mathrm{gr}} \Rightarrow \mathrm{AtA}$
$\mathrm{N}=\mathrm{mg}+\frac{\mathrm{mv}^{2}}{\mathrm{r}}=2 \mathrm{mg}[\mathrm{v}=\sqrt{\mathrm{gr}}]$
at E
$\mathrm{N}+\frac{\mathrm{mv}^{2}}{\mathrm{r}}=\mathrm{mg}$
$\Rightarrow \mathrm{N}=0 \Rightarrow$ At G and C
$\mathrm{N}=\mathrm{mg}$

Q. 5 (B,C)
$\mathrm{T}-\mathrm{mg} \cos \theta=\frac{\mathrm{m} \mathrm{v}^{2}}{\mathrm{~L}}$
Tangential Acceleration $=\mathrm{g} \sin \theta$
Q. 6 (A,B,C,D)

$$
\begin{equation*}
\frac{\mathrm{T} \sqrt{3}}{2}=\frac{\mathrm{mv}^{2}}{(\ell \sqrt{3} / 2)} \tag{1}
\end{equation*}
$$

$\frac{\mathrm{T}}{2}=\mathrm{mg}$
Hence T=2 mg, So (B) holds
From (1) \& (2) $\mathrm{V}^{2}=3 \mathrm{~g} \ell / 2$

$$
\therefore \quad \mathrm{V}=\sqrt{\frac{3 \times 9.8 \times 1.6}{2}}
$$

$\therefore \quad \mathrm{V}=2.8 \sqrt{3} \mathrm{~m} / \mathrm{s}$. So (C) hold
$\mathrm{a}_{\mathrm{c}}=\mathrm{V}^{2} / \mathrm{r}=\frac{(3 \mathrm{~g} \ell / 2)}{(\ell \sqrt{3} / 2)}=\sqrt{3} \times \mathrm{g}=9.8 \sqrt{3} \mathrm{~m} / \mathrm{s}^{2}$
$\therefore \quad(\mathrm{D})$ holds
$\mathrm{t}=\frac{2 \pi \mathrm{r}}{\mathrm{v}}=\frac{2 \pi \sqrt{\ell \sqrt{3} / 2}}{\sqrt{(3 \mathrm{~g} \ell / 2)}}$
$\mathrm{t}=4 \pi / 7 \quad \therefore$ (A) holds.
Q. 7 (B,C)
$a_{t}=\frac{d v}{d t}=a$
friction force on car $=m \sqrt{\left(\frac{v^{2}}{r}\right)^{2}+a^{2}}$
which is greater than $\frac{m v^{2}}{r}$
$\mu_{\text {min }}=\frac{\sqrt{\left(\mathrm{v}^{2} / \mathrm{r}\right)^{2}+\mathrm{a}^{2}}}{\mathrm{~g}}$
therefore it is not less than $\frac{\mathrm{a}}{\mathrm{g}}$ for safe turn.
Q. 8 (B,C)

There is no friction between road and tyres of car so that car cannot remain in static equilibrium on curved section. Whenever speed of car is greater than or less than v car will slip.
Q. 9 (B,D)

When speed of car is $36 \mathrm{~km} / \mathrm{hr}$, car can make a turn without skidding. If speed is less than $36 \mathrm{~km} / \mathrm{hr}$ than tendency of slipping is downward so it will slip down. If speed is greater than $36 \mathrm{~km} / \mathrm{hr}$ than tendency of slipping upward so it will slip up. If the car's turn at correct speed $36 \mathrm{~km} / \mathrm{hr}$
$\mathrm{N} \cos \theta=\mathrm{mg}$
$\mathrm{N} \sin \theta=\frac{\mathrm{mv}^{2}}{\mathrm{r}}$

$$
\mathrm{N}=\sqrt{(\mathrm{mg})^{2}+\left(\frac{\mathrm{mv}^{2}}{\mathrm{r}}\right)}
$$

Q. 10 (B)
Q. 11 (A)

Q. 12 (A)

(10 to 12)

The angular velocity and linear velocity are mutually perpendicular
$\therefore \overrightarrow{\mathrm{v}} \cdot \vec{\omega}=3 \mathrm{x}+24=0$ or $\mathrm{x}=-8$
The radius of circle $\mathrm{r}=\frac{\mathrm{v}}{\omega}=\frac{5}{10}=\frac{1}{2}$ meter
The acceleration of particle undergoing uniform circular motion is

$$
\begin{aligned}
\overrightarrow{\mathrm{a}} & =\vec{\omega} \times \overrightarrow{\mathrm{v}}=(-8 \hat{\mathrm{i}}+6 \hat{\mathrm{j}}) \times(3 \hat{\mathrm{i}}+4 \hat{\mathrm{j}})=-50 \hat{\mathrm{k}} \\
\therefore \overrightarrow{\mathrm{v}} \cdot \vec{\omega} & =3 \mathrm{x}+24=0 \text { or } \mathrm{x}=-8
\end{aligned}
$$

Q. 13 (D)

$\mathrm{mg}=\frac{\mathrm{mu}_{0}^{2}}{\mathrm{r}} \Rightarrow \mathrm{u}_{0}=\sqrt{\mathrm{gr}}$
Now, along vertical

$$
\mathrm{r}=\frac{1}{2} \mathrm{gt}^{2} \Rightarrow \mathrm{t}=\sqrt{\frac{2 \mathrm{r}}{\mathrm{~g}}}
$$

Along horizontal; $\mathrm{OP}=2 \mathrm{u}_{0} \mathrm{t}=2 \sqrt{2} \mathrm{r}$

Q. 14 (B)

As at B it leaves the hemisphere,

$$
\therefore \quad \mathrm{N}=0
$$

$$
\mathrm{mg} \cos \theta=\frac{\mathrm{mV}^{2}}{\mathrm{r}}
$$

$$
\mathrm{mg} \frac{\mathrm{~h}}{\mathrm{r}}=\frac{\mathrm{m} V^{2}}{\mathrm{r}}
$$

$$
\begin{equation*}
\mathrm{mv}^{2}=\mathrm{mgh} \tag{1}
\end{equation*}
$$

By energy conservation between A and B

$$
\begin{aligned}
& \mathrm{mgr}+\frac{1}{2} \mathrm{~m}\left(\frac{\mathrm{u}_{0}}{3}\right)^{2}=\mathrm{mgh}+\frac{1}{2} \mathrm{mv}^{2} \\
& \text { Put }_{0} \text { and } \mathrm{mv}^{2} \quad \therefore \mathrm{~h}=\frac{19 \mathrm{r}}{27}
\end{aligned}
$$

Q. 15 (C)

As $\mathrm{a}_{\mathrm{c}}=\frac{\mathrm{v}^{2}}{\mathrm{r}}=\mathrm{g} \cos \theta$
$\therefore \quad a_{t}=g \sin \theta$
$\therefore \quad a_{\text {net }}=g$

Alternate Solution :

when block leave only the force left is mg .

$$
\therefore \quad a_{\text {net }}=g .
$$

Q. 16 (B)

$$
\overrightarrow{\mathrm{g}}_{\text {eff }}=\overrightarrow{\mathrm{g}}-\overrightarrow{\mathrm{a}}
$$

Tension would be minimum when it (tension) is along $\vec{g}_{\text {eff }}$
$\tan \theta=\frac{\mathrm{mg}}{\frac{3}{4} \mathrm{mg}}=\frac{4}{3} \therefore \theta=53^{\circ}$.
Q. 17 (C)

$\mathrm{V}_{\min }=\sqrt{\ell \mathrm{g}_{\text {eff }}}=\sqrt{\ell \frac{5}{4} \mathrm{~g}}=\frac{\sqrt{5 \ell \mathrm{~g}}}{2}$.
Q. 18 (C)

$$
\begin{aligned}
\mathrm{T}_{\max } & =6 \mathrm{mg}_{\text {eff }}\left(\mathrm{g}_{\mathrm{eff}}=\frac{5}{4} \mathrm{~g}\right) \\
& =\frac{15}{2} \mathrm{mg}
\end{aligned}
$$

Q. 19 (A) q,s (B) p (C) p (D) q,r

From graph (a) $\Rightarrow \omega=k \theta$
where k is positive constant
angular acceleration $=\omega \frac{\mathrm{d} \omega}{\mathrm{d} \theta}=\mathrm{k} \theta \times \mathrm{k}=\mathrm{k}^{2} \theta$
\therefore angular acceleration is non uniform and directly proportional to θ.
\therefore (A) q, s
From graph $(b) \Rightarrow \omega^{2}=k \theta$.
Differentiating both sides with respect to θ.
$2 \omega \frac{\mathrm{~d} \omega}{\mathrm{~d} \theta}=\mathrm{k}$
or
$\omega \frac{\mathrm{d} \omega}{\mathrm{d} \theta}=\frac{\mathrm{k}}{2}$

Hence angular acceleration is uniform.
\therefore (B) p
From graph (c)
$\Rightarrow \omega=\mathrm{kt}$
angular acceleration $=\frac{\mathrm{d} \omega}{\mathrm{dt}}=\mathrm{k}$

Hence angular acceleration is uniform
$\Rightarrow(C) \mathrm{p}$
From graph (d)
$\Rightarrow \omega=\mathrm{kt}^{2}$
angular acceleration $=\frac{\mathrm{d} \omega}{\mathrm{dt}}=2 \mathrm{kt}$
Hence angular acceleration is non uniform and directly proportional to t .
\therefore (D) q,r
Q. 20
(A) q (B) q, s (C) q, s (D) p, s
$\mathrm{v}=2 \mathrm{t}^{2}$
Tangential acceleration $a_{t}=4 t$
Centripetal acceleration $a_{c}=\frac{v^{2}}{R}=\frac{4 t^{4}}{R}$
Angular speed $\omega=\frac{\mathrm{v}}{\mathrm{R}}=\frac{4 \mathrm{t}}{\mathrm{R}}$,
aran $\tan \theta=\frac{a_{t}}{a_{c}}=\frac{4 t R}{4 t^{4}}=\frac{R}{t^{3}}$

NUMERICAL VALUE BASED

Q. $1 \quad 10 \mathrm{~m} / \mathrm{s}$
$\mathrm{R}_{\mathrm{C}}=\frac{\mathrm{U}^{2} \cos ^{2} 37^{\circ}}{\mathrm{g}}$
$\Rightarrow 6.4=\frac{\mathrm{U}^{2} \times(4 / 5)^{2}}{10}$
Q. 2 [0625]
$\mathrm{v}=\boldsymbol{\ell}$
$\mathrm{v}^{\prime}=\nless(\mathrm{R}-5)=\frac{\omega \mathrm{R}}{5}$

$5 \mathrm{R}-25=\mathrm{R}$
$\mathrm{R}=\frac{25}{4} \mathrm{~m}=6.25 \mathrm{~m}$

Q. 3 [0050]

$R=5 m, h=2 m, \Delta x=10 m, v \sqrt{\frac{2 h}{g}}=\Delta x, a_{c}=\frac{v^{2}}{R}$
Q. 4 [2]

FBD of block in ground frame

$\mathrm{N} \cos \theta=\mathrm{mg}$
$\mathrm{N} \sin \theta=\mathrm{m} \omega^{2} \mathrm{r} \quad$ [centripetal force] $\Rightarrow \tan \theta=\omega^{2} \mathrm{r} / \mathrm{g}$
$\Rightarrow \omega=\sqrt{\frac{\mathrm{g} \tan \theta}{\mathrm{r}}}=\sqrt{\frac{\mathrm{g}}{\mathrm{h}}}(\tan \theta)=2 \times 1=2 \mathrm{rad} / \mathrm{s}$
Q. 5 [24]

Q. $6 \quad[128 \mathrm{sec}$.
$\theta=\frac{14 \times 10^{8}}{1.5 \times 10^{11}}=\frac{14}{1.5} \times 10^{-3}$
$\omega=\frac{2 \pi}{24 \times 3600}$
$\mathrm{t}=\frac{\theta}{\omega}$
$\mathrm{t}=\frac{14}{1.5} \times 10^{-3} \times \frac{24 \times 3600}{2 \pi}$
$\mathrm{t}=\frac{14 \times 8 \times 3.6}{\pi} \simeq 128 \mathrm{sec}$.
Q. 7 [2]

Given $\frac{\mathrm{dp}}{\mathrm{dt}}=\mathrm{cv}^{\mathrm{n}}$
$\therefore \quad \frac{\mathrm{mv}^{2}}{\mathrm{r}}=\mathrm{cv}^{\mathrm{n}}$
On comparing $\mathrm{n}=2$
Q. 8 [0010]

The lift goes down with retardation means acceleration is upward, let it be a.
$\mathrm{T}=2 \pi \sqrt{\frac{\mathrm{~h}}{\mathrm{~g}_{\text {eff }}}}=2 \pi \sqrt{\frac{\mathrm{~h}}{\mathrm{~g}+\mathrm{a}}}$
$\Rightarrow \quad 2=2 \pi \sqrt{\frac{2}{10+a}} \Rightarrow a=10$
Q. $9 \quad$ [0009]

$$
\begin{aligned}
& <\omega>\frac{\int \omega \mathrm{dt}}{\int \mathrm{dt}}=\frac{\text { Area under graph }}{\text { time }} \\
& =\frac{\frac{1}{2} \times 12[25+50]}{50}=9 \mathrm{r} / \mathrm{s} .
\end{aligned}
$$

Q. $10 \quad\left[20 \mathrm{~m} / \mathrm{s}^{2]}\right.$

At highest point $\quad a_{c}=g$
$\frac{u^{2} \cos ^{2} 45^{\circ}}{R_{c}}=g\left[R_{c}=\right.$ Radius of curvature $]$

$\frac{\mathrm{u}^{2}}{2 \mathrm{R}_{\mathrm{c}}}=\mathrm{g}$
Now when be moves along the same path with constant speed u, then at top point, since radius of curvature $\left(\mathrm{R}_{\mathrm{c}}\right)$ remains same
$\frac{u^{2}}{R_{c}}=a_{c} \ldots .(2)$

from (1) and (2)
$\frac{1}{2}=\frac{\mathrm{g}}{\mathrm{a}_{\mathrm{c}}}$
$\Rightarrow \mathrm{a}_{\mathrm{c}}=2 \mathrm{~g}$
$\mathrm{a}_{\mathrm{c}}=20 \mathrm{~m} / \mathrm{s}^{2}$
Q. 11 [5]
$\mathrm{T} \sin \theta=m \omega^{2} \ell \sin \theta$

$\mathrm{T}=\mathrm{m} l \omega^{2}$
$\mathrm{T} \cos \theta+\mathrm{N}=\mathrm{mg}$
$\mathrm{N}=\mathrm{mg}-\mathrm{m} l \omega^{2} \cos \theta$
$\mathrm{N}=1 \times 10-1 \times 0.1 \times \frac{1}{2} \times 100=5$
Q. $12\left[50 \mathrm{~m} / \mathrm{s}^{2]}\right.$

Angular velocity all aircraft will be same

$\omega=\frac{\mathrm{V}_{2}}{\mathrm{R}_{2}}=\frac{720 \times \frac{1000}{3600}}{1200}=\frac{1}{6} \mathrm{rad} / \mathrm{s}$
$a_{3}=\omega^{2} R_{3}=\left(\frac{1}{6}\right)^{2}(1800)=50 \mathrm{~m} / \mathrm{s}^{2}$
Q. 13 [5 m]
$5=\frac{1}{2} \times \mathrm{gt}^{2}$

$\mathrm{t}=1 \mathrm{sec}$.
$\mathrm{v}=\frac{2 \pi}{\pi} \times 2.5=5 \mathrm{~m} / \mathrm{s}$
$\mathrm{S}=\mathrm{vt}=5 \mathrm{~m}$
Q. 14 [0005]
$\mathrm{T}=\mathrm{mg}$
$\mathrm{m}_{\text {rmax }} \omega^{2}=\mathrm{T}+\mu \mathrm{mg}$
$m r_{\text {min }} \omega^{2}=\mathrm{T}-\mu \mathrm{mg}$
$\mathrm{m}\left(\mathrm{r}_{\text {max }}+\mathrm{r}_{\text {min }}\right) \omega^{2}=2 \mathrm{mg}$
$\therefore \mathrm{r}_{\max }+\mathrm{r}_{\min }=\frac{2 \mathrm{~g}}{\omega^{2}}=5 \mathrm{~m}$
Q. $15 \quad v=\sqrt{\frac{k(\Delta x) 2 \pi R}{m_{0} \ell}}=1100$

$\mathrm{k} \Delta \mathrm{x}=\mathrm{T}=\mathrm{k}(2 \pi \mathrm{r}-\ell)$
$2 \operatorname{Tsin}\left(\frac{d \theta}{2}\right)=(d m) \frac{\mathrm{v}^{2}}{\mathrm{R}}$
$\operatorname{Td} \theta=\left(\frac{\mathrm{m}_{0} \ell}{2 \pi \mathrm{r}}\right) \mathrm{r} \cdot(2 \mathrm{~d} \theta) \cdot \frac{\mathrm{v}^{2}}{\mathrm{r}}$
$\mathrm{k}(2 \pi \mathrm{r}-\ell)=\frac{\mathrm{m}_{0} \ell \mathrm{v}^{2}}{\pi \mathrm{r}}$

$$
\therefore \mathrm{v}^{2}=\frac{\mathrm{k} \pi \mathrm{r}(2 \pi \mathrm{r}-\ell)}{\mathrm{m}_{0} \ell}
$$

Q. 16 [0200]
$\mathrm{N}_{\mathrm{b}}-\mathrm{mg}=\frac{\mathrm{mv}^{2}}{\mathrm{R}}$

$$
\begin{aligned}
& \mathrm{N}_{\mathrm{b}}=\mathrm{mg}+\frac{\mathrm{mv}^{2}}{\mathrm{R}} \\
& \mathrm{~N}_{\mathrm{T}}+\mathrm{mg}=\frac{\mathrm{mv}^{2}}{\mathrm{R}} \\
& \mathrm{~N}_{\mathrm{T}}=\frac{\mathrm{mv}}{\mathrm{R}}-\mathrm{mg}=\frac{1}{3}\left(\mathrm{mg}+\frac{\mathrm{mv}^{2}}{\mathrm{R}}\right) \\
& \frac{2}{3} \frac{\mathrm{mv}^{2}}{\mathrm{R}}=\frac{4}{3} \mathrm{mg} \\
& \mathrm{v}=\sqrt{2 \mathrm{gR}}=\sqrt{20 \times 2000}=200 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Q. 17 [0002]

$\mathrm{F}-\mathrm{N}_{1} \cos 60^{\circ}=\mathrm{mg}$
$N_{1} \sin 60^{\circ}=m \omega^{2}\left(\frac{\sqrt{3} R}{2}\right)$
$\mathrm{F}-\frac{\mathrm{m} \omega^{2} \mathrm{R}}{2}=\mathrm{mg}$
$\mathrm{N}_{2} \cos 60^{\circ}=\mathrm{F}+2 \mathrm{mg}$
$N_{2} \sin 60^{\circ}=2 m \omega^{2}\left(\frac{\sqrt{3} R}{2}\right)$
$m \omega^{2} \mathrm{R}=\mathrm{F}+2 \mathrm{mg}$

$$
\frac{1}{2} m \omega^{2} \mathrm{R}=3 \mathrm{mg} \therefore \omega=\sqrt{\frac{6 g}{\mathrm{R}}}
$$

Q. 18 [0003]

As shown in
figure, the forces
acting on theblock are thegravitational force mg , thenormal reaction N , the static friction f , and the cenrifugal
force with $\mathrm{f}=\mu_{\mathrm{s}} \mathrm{N}, \mathrm{P}=\mathrm{m} \omega^{2} \mathrm{r}$. Thus the conditions for equilibrium are
$\mathrm{mg} \sin \theta=\mathrm{P} \cos \theta+\mu_{\mathrm{s}} \mathrm{N}$,

$$
N=m g \cos \theta+P \sin \theta
$$

Hence $\mathrm{mg} \sin \theta=\mathrm{P} \cos \theta+\mu_{\mathrm{s}} \mathrm{mg} \cos \theta+\mu_{\mathrm{s}} \mathrm{P} \sin \theta$,
giving $P=\left(\frac{\sin \theta-\mu_{s} \cos \theta}{\cos \theta+\mu_{s} \sin \theta}\right) m g=m \omega^{2} r$,
or $\quad \omega^{2}=\left(\frac{\sin \theta-\mu_{\mathrm{s}} \cos \theta}{\cos \theta+\mu_{\mathrm{s}} \sin \theta}\right)=\frac{\mathrm{g}}{\mathrm{r}}$
$=\left(\frac{\frac{3}{5}-\frac{1}{4} \cdot \frac{4}{5}}{\frac{4}{5}+\frac{1}{4} \cdot \frac{3}{5}}\right) \frac{9.8}{0.4}=10.3$
$\omega=3.2 \mathrm{rad} / \mathrm{s}$
Q. 19 [0010]
$\mathrm{f} \cos \theta-\mathrm{N} \sin \theta=\mathrm{m} \omega^{2} \mathrm{r}$
$\mathrm{f} \sin \theta+\mathrm{N} \cos \theta=\mathrm{mg}$
for limiting condtion $f=\mu N$

$\Rightarrow \frac{\omega^{2} r}{g}=\frac{\mu \cos \theta-\sin \theta}{\cos \theta+\mu \sin \theta}=\frac{0.2}{6.4}$
$\Rightarrow \mathrm{T}=10 \mathrm{~s}$
Q. 20 [120]

In first time interval
$\mathrm{T} \cos \theta=\mathrm{mg}$

$$
\begin{aligned}
& \mathrm{T} \sin \theta=\mathrm{mg} \\
& \Rightarrow \quad \mathrm{~T}=\mathrm{m} \sqrt{\mathrm{~g}^{2}+\mathrm{a}^{2}} \\
& \mathrm{~g}^{2}+\mathrm{a}^{2} \quad=\frac{25}{16} \times \mathrm{g}^{2} \Rightarrow \mathrm{a}=\frac{3}{4} \mathrm{~g}
\end{aligned}
$$

At $\mathrm{t}=4$ velocity $\mathrm{v}=\mathrm{at}=3 \mathrm{~g}$
In $\mathrm{II}^{\text {nd }}$ time interval, string vertical means $\theta=0$

$$
\begin{array}{ll}
\Rightarrow & \mathrm{a}=0 \\
\Rightarrow & \mathrm{~T}=\mathrm{mg}
\end{array}
$$

In III ${ }^{\text {rd }}$ time interval

$$
\mathrm{v}=3 \mathrm{~g} \quad \mathrm{~T} \sin \theta=\frac{\mathrm{mv}^{2}}{\mathrm{R}}
$$

$\mathrm{T} \cos \theta=\mathrm{mg}$
solving

$$
\begin{aligned}
& \mathrm{T}=\mathrm{m} \sqrt{\mathrm{~g}^{2}+\left(\frac{\mathrm{v}^{2}}{\mathrm{R}}\right)^{2}}=5 / 4 \mathrm{mg} \\
\Rightarrow \quad & \left(\frac{\mathrm{v}^{2}}{\mathrm{R}}\right)=\frac{3}{4} \mathrm{~g} \\
\Rightarrow \quad & \mathrm{R}=\frac{9^{2} \mathrm{~g}^{2}}{\frac{3}{4} \mathrm{~g}}=12 \mathrm{~g}=120 \mathrm{~m}
\end{aligned}
$$

KVPY

PREVIOUS YEAR'S

Q. 1
 (C)

$\mathrm{F}_{\mathrm{r}}=\mathrm{m} \omega^{2} \mathrm{r} \cos 45^{\circ}$
where $r=R \cos 45^{\circ}$
$\mathrm{F}_{\mathrm{r}}=\frac{\mathrm{m} \omega^{2} \mathrm{R}}{2}$
Q. 2 (C)

$\mathrm{T}=\frac{2 \pi \mathrm{R}}{\mathrm{V}}$
$\mathrm{a}_{\mathrm{C}}=\frac{\mathrm{V}^{2}}{\mathrm{R}}$
$8 a_{C}=\frac{V^{\prime 2}}{2 R}$
(8) $\frac{V^{2}}{R}=\frac{V^{\prime} R}{2 R}$
$\mathrm{V}^{\prime 2}=16 \mathrm{~V}^{2}$
$\mathrm{V}^{\prime}=4 \mathrm{~V}$
\therefore Time period $=\frac{(2 \pi) \mathrm{R}^{\prime}}{\mathrm{V}^{\prime}}$
$=\frac{(2 \pi) 2 \mathrm{R}}{4 \mathrm{~V}}$
$=\frac{\pi \mathrm{R}}{\mathrm{V}}=(\mathrm{T} / 2)$
Q. 3 (B)

$$
\begin{aligned}
& |\overrightarrow{\mathrm{AB}}|=\text { Direction of resultant velocity } \\
& \overrightarrow{\mathrm{AD}}=\text { Direction of tangential velocity } \\
& \forall \tan \alpha=\frac{\mathrm{dr}}{\operatorname{rd} \theta}=\frac{\mathrm{r}}{\mathrm{r}} \\
& \tan \alpha=1 \\
& \alpha=45^{\circ}
\end{aligned}
$$

Q. 4 (A)

$\tan 60^{\circ}=\frac{L}{R}=\frac{1}{1 / \sqrt{3}}=\sqrt{3}=\tan \theta$
$\therefore \mathrm{x}=\sqrt{1+\frac{1}{3}}=\frac{2}{\sqrt{3}}$
$\cos \theta=\frac{\mathrm{R}^{2}+\mathrm{x}^{2}-\mathrm{L}^{2}}{2 \mathrm{Rx}}$
$\Rightarrow \mathrm{R}^{2}+\mathrm{x}^{2}-\mathrm{L}^{2}=2 \mathrm{Rx} \cos \theta$
$\Rightarrow 2 \mathrm{x} \frac{\mathrm{dx}}{\mathrm{dt}}=2 \mathrm{R}\left[\mathrm{x}(-\sin \theta)+\cos \theta \frac{\mathrm{dx}}{\mathrm{dt}}\right]$
$\frac{d x}{d t}[x-R \cos \theta]=-R x \sin \theta \frac{d \theta}{d t}$
$\therefore-\frac{\mathrm{dx}}{\mathrm{dt}}=\mathrm{v}$ and $\frac{\mathrm{d} \theta}{\mathrm{dt}}=\omega$
$\Rightarrow v=\frac{R x \sin \theta \omega}{x-R \cos \theta}$
$\frac{\frac{1}{\sqrt{3}} \frac{2}{\sqrt{3}} \cdot \frac{\sqrt{3}}{2} \cdot \omega}{\frac{2}{\sqrt{3}}-\frac{1}{\sqrt{3}} \cdot \frac{1}{2}}=\frac{\frac{\omega}{\sqrt{3}}}{\frac{1}{\sqrt{3}} \frac{3}{2}}=\frac{2 \omega}{3}$
$\mathrm{v}=\frac{2 \omega}{3}$
Q. 5 (B)

for $\mathrm{h}_{\max } \Rightarrow \frac{\mathrm{dh}_{\text {max }}}{\mathrm{d} \theta}=0$
Solving we get $\frac{\mathrm{u}^{2}}{2 \mathrm{~g}}+\frac{\mathrm{gR}^{2}}{2 \mathrm{u}^{2}}$

JEE MAIN

PREVIOUS YEAR'S

Q. 1 (2)

Particle is in uniform circular motion.
Time Period $\mathrm{T}=\frac{0.1 \mathrm{~s}}{30^{\circ}} \times 360^{\circ}=1.2 \mathrm{~s}$
Now,

$$
\begin{gathered}
F=-k x=-m \omega^{2} x \\
\frac{F}{m}=-\omega^{2} x=-\left(\frac{2 \pi}{T}\right)^{2} x=-\frac{4 \pi^{2}}{T^{2}} x \\
=-\frac{4 \times 9.87}{(1.2)^{2}} \times(-0.36)=+9.87 \frac{\mathrm{~N}}{\mathrm{~kg}}
\end{gathered}
$$

Q. 2 (2)
$\mathrm{F}=\frac{\mathrm{C}}{\mathrm{r}^{3}}=\mathrm{m} \omega^{2} \mathrm{r}$
$\therefore \quad \omega^{2} \alpha \frac{1}{\mathrm{r}^{4}}$
$\therefore \quad \omega \alpha \frac{1}{\mathrm{r}^{2}}$
$\therefore \mathrm{T} \alpha \mathrm{r}^{2}$
Q. 3 (4)
$\mathrm{N}=\mathrm{m} \omega^{2} \mathrm{R}$
$\mathrm{N}=\mathrm{m}\left[\frac{4 \pi^{2}}{\mathrm{~T}^{2}}\right] \mathrm{R}$
Given $\mathrm{m}=0.2 \mathrm{~kg}, \mathrm{~T}=40 \mathrm{~S}, \mathrm{R}=0.2 \mathrm{~m}$
Put values in equation (1)
$\mathrm{N}=9.859 \times 10^{-4} \mathrm{~N}$

Q. 4 (4)

Statement I :

$\mathrm{v}_{\text {max }}=\sqrt{\mu \mathrm{Rg}}=\sqrt{(0.2) \times 2 \times 9.8}$
$\mathrm{v}_{\text {max }}=1.97 \mathrm{~m} / \mathrm{s}$
$7 \mathrm{~km} / \mathrm{h}=1.944 \mathrm{~m} / \mathrm{s}$
Speed is lower than $v_{\text {max }}$, hence it can take safe turn.
Statement II :
$\mathrm{v}_{\max }=\sqrt{\operatorname{Rg}\left[\frac{\tan \theta+\mu}{1-\mu \tan \theta}\right]}$
$=\sqrt{2 \times 9.8\left[\frac{1+0.2}{1-0.2}\right]}=5.42 \mathrm{~m} / \mathrm{s}$
$18.5 \mathrm{~km} / \mathrm{h}=5.14 \mathrm{~m} / \mathrm{s}$
Speed is lower than $v_{\text {max }}$, hence it can take safe turn.
Q. 5 (2)
$\mu_{\mathrm{s}} \mathrm{N}=\frac{\mathrm{mv}^{2}}{\mathrm{R}}$
$N=\frac{m v^{2}}{\mu_{\mathrm{s}} R}=m g+F_{L}$
$\mathrm{F}_{\mathrm{L}}=\frac{\mathrm{m} v^{2}}{\mu_{\mathrm{s}} \mathrm{R}}-\mathrm{mg}$
Q. 6
Q. 7
(2)
(3)

$$
\begin{aligned}
& \overrightarrow{3 \mathrm{M}} \longrightarrow \mathrm{~V}_{0} \longrightarrow \overrightarrow{2 \mathrm{M}} \mathrm{~V}_{2} \longrightarrow \mathrm{~V}_{1} \\
& 3 \mathrm{MV}_{0}=2 \mathrm{MV}_{2}+\mathrm{MV}_{1} \\
& 3 \mathrm{~V}_{0}=2 \mathrm{~V}_{2}+\mathrm{V}_{1} \\
& 120=2 \mathrm{~V}_{2}+60 \Rightarrow \mathrm{~V}_{2}=30 \mathrm{~m} / \mathrm{s} \\
& \frac{\mathrm{MK.E.}}{\text { K.E. }}=\frac{\frac{1}{2} \mathrm{MV}_{1}^{2}+\frac{1}{2} 2 \mathrm{MV}_{2}^{2}-\frac{1}{2} 3 \mathrm{MV}_{0}^{2}}{\frac{1}{2} 3 \mathrm{MV}_{0}^{2}} \\
& \quad=\frac{\mathrm{V}_{1}^{2}+2 \mathrm{~V}_{2}^{2}-3 \mathrm{~V}_{0}^{2}}{3 \mathrm{~V}_{0}^{2}}=\frac{3600+1800-4800}{4800} \\
& \quad=\frac{1}{8}
\end{aligned}
$$

Q. 8

(2)

JEE-ADVACNED
 PREVIOUS YEAR'S

Q. 1 (D)

$\mathrm{T} \sin \theta=\mathrm{mL} \sin \theta \omega^{2}$

$$
324=0.5 \times 0.5 \times \omega^{2}
$$

$\omega^{2}=\frac{324}{0.5 \times 0.5}$
$\omega=\sqrt{\frac{324}{0.5 \times 0.5}}$
$\omega=\frac{18}{0.5}=36 \mathrm{rad} / \mathrm{sec}$.
Q. 2 (A)

$\left.\mathrm{v}_{\mathrm{r}}=\mid 2 \mathrm{v} \sin \theta\right) \mid$
$=\mid 2 \mathrm{v} \sin \omega \mathrm{t}) \mid$

Q. 3 (B)
$a=\omega^{2} r$
$\Rightarrow \int_{0}^{v} v d v=\omega^{2} \int_{R / 2}^{r} r d r \Rightarrow v=\omega \sqrt{r^{2}-\frac{R^{2}}{4}}$
$\& \int_{R / 2}^{r} \frac{d r}{\sqrt{r^{2}-\frac{R^{2}}{4}}}=\omega \int_{0}^{t} d t$
$\Rightarrow r=\frac{R}{4}\left(e^{\omega t}+e^{-\omega t}\right)$
Hence, (B)
Q. 4 (D)
$\vec{F}_{r o t}=-m \omega^{2} r \hat{i}+2 m v_{r o t} \omega(-\hat{\mathbf{j}})+m \omega^{2} r \hat{i}$
$=2 m v_{\text {rot }} \omega(-\hat{\mathrm{j}})$
$=2 m \frac{\omega R}{4}\left(e^{\omega t}-e^{-\omega t}\right) \omega(-\hat{\mathrm{j}})$
$\vec{F}_{n e t}=-\vec{F}_{r o t}+m g \hat{k}=\frac{m \omega^{2} R}{2}\left(e^{\omega t}-e^{-\omega t}\right) \hat{\mathrm{j}}+m g \hat{k}$
Hence, (D)

Work, Power and Energy

EXERCISES

ELEMENTARYS

Q. 1 (3)

$\mathrm{W}=($ force $)($ displacement $)=($ force $)($ zero $)=0$
Q. 2 (1)

Joule $=($ Newton $)($ Metre $)=\frac{4 \text { Newton }}{4} \times \frac{4 \text { Metre }}{4}=$
$\frac{\text { Joule }}{16}$
Hence : 1 Joule $=16$ joule (Joule is new unit of energy)
Q. 3 (4)

Stopping distance $S \propto u^{2}$. If the speed is doubled then the stopping distance will be four times.

Q. 4 (2)

Work done $=$ Force \times displacement
$=$ Weight of the book \times Height of the book shelf
Q. 5 (4)
$\mathrm{W}=\overrightarrow{\mathrm{F}} \cdot \overrightarrow{\mathrm{s}}=(5 \hat{\mathrm{i}}+6 \hat{\mathrm{j}}-4 \hat{\mathrm{k}}) \cdot(6 \hat{\mathrm{i}}+5 \hat{\mathrm{k}})=30-20=10$ units
Q. 6 (4)

$$
\mathrm{s}=\frac{\mathrm{t}^{2}}{4} \therefore \mathrm{ds}=\frac{\mathrm{t}}{2} \mathrm{dt}
$$

$$
\mathrm{F}=\mathrm{ma}=\frac{\mathrm{md}^{2} \mathrm{~s}}{\mathrm{dt}^{2}}=\frac{6 \mathrm{~d}^{2}}{\mathrm{dt}^{2}}\left[\frac{\mathrm{t}^{2}}{4}\right]=3 \mathrm{~N}
$$

N
o
W
$\mathrm{W}=\int_{0}^{2} \mathrm{Fds}=\int_{0}^{2} 3 \frac{\mathrm{t}}{2} \mathrm{dt}=\frac{3}{2}\left[\frac{\mathrm{t}^{2}}{2}\right]_{0}^{2}=\frac{3}{4}\left[(2)^{2}-(0)^{2}\right]=3 \mathrm{~J}$
Q. 7 (2)

$$
\mathrm{W} \int_{0}^{\mathrm{x}_{1}} \mathrm{~F} . \mathrm{dx}=\int_{0}^{\mathrm{x}_{1}} \mathrm{Cxdx}=\mathrm{C}\left[\frac{\mathrm{x}^{2}}{2}\right]_{0}^{\mathrm{x}_{1}}=\frac{1}{2} \mathrm{Cx}_{1}^{2}
$$

Q. 8 (3)

When the block moves vertically downward with $\underset{T}{\text { acceleration } \frac{g}{4}}$ then tension in the cord

Q. 10

$$
\mathrm{T}=\mathrm{M}\left(\mathrm{~g}-\frac{\mathrm{g}}{4}\right)=\frac{3}{4} \mathrm{Mg}
$$

Work done by the cord $=\overrightarrow{\mathrm{F}} . \overrightarrow{\mathrm{s}}=\mathrm{Fs} \cos \theta$

$$
=\mathrm{Td} \cos \left(180^{\circ}\right)=-\left(\frac{3 \mathrm{Mg}}{4}\right) \times \mathrm{d}=-3 \mathrm{Mg} \frac{\mathrm{~d}}{4}
$$

Q. 9 (2)

Work done, $\mathrm{W}=$ area under $\mathrm{F}-\mathrm{S}$ graph from $\mathrm{S}=0 \mathrm{~m}$ to $\mathrm{x}=20 \mathrm{~m}$
$=$ Area of trapezium ABCD + Area of trapezium CEFD
$=\frac{1}{2} \times(10+15) \times 10+\frac{1}{2} \times(10+20) \times 5$
$=125+75=200 \mathrm{~J}$.
(2)

Here, mass of the block, $\mathrm{m}=3 \mathrm{~kg}$ Initial speed of the block, $u=0$ (as it starts from rest)
Final speed of the block, $v=4 \mathrm{~m} / \mathrm{s}$
Height, h (in this case the radius of quarter circle $)=$ 2m

$$
\begin{aligned}
& \Delta \mathrm{K}=\frac{1}{2} \mathrm{mv}^{2}-\frac{1}{2} \mathrm{mu}^{2}=\frac{1}{2} \mathrm{mv}^{2}-0 \\
& =\frac{1}{2}(3 \mathrm{~kg})(4 \mathrm{~m} / \mathrm{s})^{2}=24 \mathrm{~J}
\end{aligned}
$$

The work done by the gravitational force is
$\mathrm{W}_{\mathrm{g}}=\mathrm{mgh}=(3 \mathrm{~kg})\left(10 \mathrm{~m} / \mathrm{s}^{2}\right)(2 \mathrm{~m})=60 \mathrm{~J}$
If W_{f} is the work done by the friction, then according to work energy theorem,
$\mathrm{W}_{\mathrm{g}}+\mathrm{W}_{\mathrm{f}}=\Delta \mathrm{K}$
or $\mathrm{W}_{\mathrm{f}}=\Delta \mathrm{K}-\mathrm{W}_{\mathrm{g}}=24 \mathrm{~J}-60 \mathrm{~J}=-36 \mathrm{~J}$
As work done against friction is equal and opposite to work done by the friction,
\therefore The amount of work done against friction is 36 J .

Q. 11 (4)

According to work-energy theorem, the work done by the net force on the body is equal to the change in its kinetic energy.
i.e., $W=K_{f}-K_{i}$.

Q. 12 (3)

According to work-energy theorem
$\mathrm{W}=$ Change in kinetic energy

$$
\mathrm{FS} \cos \theta=\frac{1}{2} \mathrm{mv}^{2}-\frac{1}{2} \mathrm{mu}^{2}
$$

Substituting the given values, we get

$$
20 \times 4 \times \cos \theta=40-0
$$

$(\because \mathrm{u}=0)$
or $\quad \cos \theta=\frac{40}{80}=\frac{1}{2} \quad$ or $\quad \theta=\cos ^{-1}\left(\frac{1}{2}\right)=60^{\circ}$

Q. 13 (2)

(Applied force - frictional force) \times distance $=$ Gain in kinetic energy.
$\therefore \quad(20-\mathrm{f}) \times 2=10$ or $20-\mathrm{f}=5$ or $\mathrm{f}=15 \mathrm{~N}$.

Q. 14 (3)

Power $=\frac{\text { Work }}{\text { Time }}$
$\therefore \quad P=\frac{m g h}{t}$ or $t=\frac{m g h}{P}$
Substituting the given values, we get

$$
t=\frac{200 \times 10 \times 40}{10 \times 10^{3}}=8 \mathrm{~s}
$$

Q. 15 (1)

Power $=($ component of force in the direction of velocity)

$$
=\mathrm{F} \cos \theta \mathrm{v}
$$

Q. 16 (4)

In compression or extension of a spring work is done against restoring force.

In moving a body against gravity work is done against gravitational force of attraction.
It means in all three cases potential energy of the system increases.
But when the bubble rises in the direction of upthrust force then system works so the potential energy of the system decreases.

Q. 17 (2)

According to the conservation of energy, kinetic energy at A + potential energy at B
$\Rightarrow 0+\mathrm{mgh}=\frac{1}{2} \mathrm{mv}^{2}+0$
or $\mathrm{v}^{2}=2 \mathrm{gh}=2 \times 9.8 \times 0.20 \quad(\because \mathrm{~h}=$ radius $=20 \mathrm{~cm}$ $=0.2 \mathrm{~m}$)

According to work - energy theorem,
Work done on the ball = change in kinetic energy
$=\frac{1}{2} \mathrm{mv}^{2}-(0)^{2} \quad=\frac{1}{2} \times \frac{2}{1000} \times 2 \times 9.8 \times 0.2$
$=3.92 \times 10^{-3} \mathrm{~J}=3.92 \mathrm{~mJ}$
Q. 18 (2)

In the stable equilibrium, a body has minimum potential energy.
Q. 19 (1)

Here $V(x)=\left(x^{2}-3 x\right) J$
For a conservative field, force, $F=-\frac{d V}{d x}$
$\therefore \mathrm{F}=-\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{2}-3 \mathrm{x}\right)=-(2 \mathrm{x}-3)=-2 \mathrm{x}+3$
At equilibrium position, $\mathrm{F}=0$
$\therefore-2 x+3 x=0$ or $x=\frac{3}{2} m=1.5 m$
Q. 20
(4)

Condition for vertical looping $\mathrm{h}=\frac{5}{2} \mathrm{r}=5 \mathrm{~cm}$
$\therefore \mathrm{r}=2 \mathrm{~cm}$

JEE-MAIN
OBJECTIVE QUESTIONS
Q. 1 (2)

Work done by centripetal force is always zero, because force and instantaneous displacement are always perpendicular.
$\mathrm{W}=\overrightarrow{\mathrm{F}} \cdot \overrightarrow{\mathrm{s}}=\mathrm{Fs} \cos \theta=\mathrm{Fs} \cos \left(90^{\circ}\right)=0$
Q. 2 (3)
$25=5 \times 10 \times \cos \theta \quad$ so $\theta=60^{\circ}$
Q. 3 (2)

Work done does not depend on time.
Q. 4 (2)
$\mathrm{W}=\left(2000 \sin 15^{\circ}\right) \times 10=5176.8 \mathrm{~J}$
Q. 5 (3)
$\mathrm{W}=20 \times 10 \times 20 \times 0.25=1000 \mathrm{~J}$
Q. 6 (1)
$\mathrm{W}=\overline{\mathrm{F}} \cdot\left(\overline{\mathrm{r}}_{2}-\overline{\mathrm{r}}_{1}\right)=100 \mathrm{~J}$
Q. 7 (3)
$S_{1}=\frac{1}{2} \mathrm{~g} 1^{2}, \mathrm{~s}_{2}=\frac{1}{2} \mathrm{~g} 2^{2}, \mathrm{~S}_{3}=\frac{1}{2} \mathrm{~g} 3^{2}$
$S_{2}-S_{1}=\frac{1}{2}$ g $3, S_{3}-S_{2}=\frac{1}{2}$ g 5
$\mathrm{W}_{1}=(\mathrm{mg}) \mathrm{S}_{1}, \mathrm{~W}_{2}=(\mathrm{mg})\left(\mathrm{S}_{2}-\mathrm{S}_{1}\right), \mathrm{W}_{3}=(\mathrm{mg})\left(\mathrm{S}_{3}-\right.$ S_{2})
$\mathrm{W}_{1}: \mathrm{W}_{2}: \mathrm{W}_{3}=1: 3: 5$
Q. 8 (1)
$\mathrm{T}=\mathrm{mg}+\mathrm{ma}, \mathrm{S}=\frac{1}{2} \mathrm{at}^{2}$
$\mathrm{W}_{\mathrm{T}}=\mathrm{T} \times \mathrm{S}$
$=\frac{\mathrm{m}(\mathrm{g}+\mathrm{a}) \mathrm{at}^{2}}{2}$
Q. 9 (4)

Displacement of surface point (where force acts) = 0 hence $\mathrm{W}=0$

Q. 10 (2)

$\mathrm{w}=\mathrm{mgh}, \cos \theta=4 / 5$
$=10 \times 9.8 \times 3=294$ joule
Q. 11 (2)
$\mathrm{W}_{\mathrm{a}}+\mathrm{W}_{\mathrm{c}}=\Delta \mathrm{K}=0$,
$\mathrm{W}_{\mathrm{a}}-\mathrm{mg}\left(\frac{\ell}{2}-\frac{\ell}{2} \cos 60^{\circ}\right)=0$
$\mathrm{W}_{\mathrm{a}}=\frac{\mathrm{mg} \ell}{4}=(0.5)(10)\left(\frac{1}{4}\right)=\frac{5}{4} \mathrm{~J}$.
Q. 12 (3)
$\mathrm{F}=\mathrm{K}_{1} \mathrm{x}_{1}, \mathrm{x}_{1}=\frac{\mathrm{F}}{\mathrm{K}_{1}}, \mathrm{~W}_{1}=\frac{1}{2} \mathrm{~K}_{1} \mathrm{x}_{1}^{2}=\frac{\mathrm{F}^{2}}{2 \mathrm{~K}_{1}}$
similarly $\mathrm{W}_{2}=\frac{\mathrm{F}^{2}}{2 \mathrm{~K}_{2}}$ since $\mathrm{K}_{1}>\mathrm{K}_{2}, \mathrm{~W}_{1}<\mathrm{W}_{2}$
Q. 13 (4)
$\mathrm{W}_{1}=$ work done by spring on first mass
$\mathrm{W}_{2}=$ work done by spring on second mass
$\mathrm{W}_{1}=\mathrm{W}_{2}=\mathrm{W}$ (say)
$\mathrm{W}_{1}+\mathrm{W}_{2}=\mathrm{U}_{\mathrm{i}}-\mathrm{U}_{\mathrm{f}}$
$2 \mathrm{~W}=0-\frac{1}{2} \mathrm{Kx}^{2}$
$\mathrm{W}=-\frac{\mathrm{Kx}^{2}}{4}$
Q. 14 (4)
$\mathrm{W}_{\mathrm{F}}=\int\left(\frac{\mathrm{K}}{\mathrm{S}}\right) \mathrm{ds}=\mathrm{K}$ In $\mathrm{s}+\mathrm{C}$ Ans : (D)
(1)
$W=\int_{0}^{1} F d x=\frac{1}{6} J$
Q. 16 (3)

Let $\vec{r}=d x \hat{i}+d y \hat{j}, F=3 x \hat{i}+4 \hat{j}$
$w=\int(3 x \hat{i}+4 \hat{\mathrm{j}}) \cdot(\mathrm{dx} \hat{\mathrm{i}}+\mathrm{dy} \hat{\mathrm{j}})$
$=\int_{2 m}^{3 m} 3 x d x+\int_{2 m}^{0} 4 d y=\left[\frac{3 x^{2}}{2}\right]_{2 m}^{3 m}+[4 y]_{3 m}^{0}$
$=\left[\frac{3 \times 9}{2}-\frac{3 \times 2^{2}}{2}\right]+[0-12]=-4.5 \mathrm{~J}$
Q. 17 (3)
$A=$ area under the curve $=m \int_{0}^{v} v \frac{d v}{d x} d x=\frac{m v^{2}}{2}$
$\frac{100 \times 11}{2}=\frac{\mathrm{mv}^{2}}{2}=\operatorname{mgy}_{\max }$
$\therefore \mathrm{y}_{\text {max }}=11 \mathrm{~m}$

Q. 18 (2)

$2 \mathrm{~K}^{\mathrm{E}} \mathrm{E}_{\text {man }}=\mathrm{K}^{\mathrm{E}} \mathrm{E}_{\text {boy }}$
$2 \times \frac{1}{2} \mathrm{M} \times \mathrm{v}_{\text {man }}^{2}=\frac{1}{2} \cdot \frac{\mathrm{M}}{2} \mathrm{v}_{\text {boy }}^{2}$
$\mathrm{V}_{\text {man }}=\frac{\mathrm{V}_{\mathrm{boy}}}{2}$
$\Rightarrow \frac{1}{2} \mathrm{M}\left(\mathrm{v}_{\text {man }}+1\right)^{2}=\frac{1}{2} \cdot \frac{\mathrm{M}}{2} \mathrm{v}_{\text {boy }}^{2}$
$\Rightarrow\left(\mathrm{v}_{\text {man }}+1\right)^{2}=\frac{\mathrm{V}_{\text {boy }}^{2}}{2} \Rightarrow \mathrm{v}_{\text {man }}=(\sqrt{2}+1) \mathrm{m} / \mathrm{sec}$
Q. 19 (1)
$\mathrm{KE}=\frac{\mathrm{P}^{2}}{2 \mathrm{~m}}=1$

Q. 20 (2)

$\mathrm{a}=\frac{\mathrm{F}}{\mathrm{m}}, \mathrm{S}=\frac{1}{2}\left(\frac{\mathrm{~F}}{\mathrm{~m}}\right) \mathrm{t}^{2}, \mathrm{~W}_{\mathrm{F}}=\mathrm{FS}=\mathrm{F}\left(\frac{\mathrm{Ft}^{2}}{2 \mathrm{~m}}\right)$

Q. 21 (4)

Area under curve $=\frac{1}{2}(4)(20)=40 \mathrm{~J}$
$\mathrm{W}=$ work done by resistive force $\mathrm{F}=-40 \mathrm{~J}$
$-40=\mathrm{K}_{\mathrm{f}}-\mathrm{K}_{\mathrm{i}}, \mathrm{K}_{\mathrm{i}}=50 \mathrm{~J}$, so $\mathrm{K}_{\mathrm{f}}=50-40=10 \mathrm{~J}$
Q. 22 (4)
$\mathrm{W}=$ area $=80=\frac{1}{2}(0.1) \mathrm{u}^{2}-0$,
so $u=40 \mathrm{~m} / \mathrm{s}$
Q. 23 (1)
$\mathrm{h}=\frac{1}{2} \mathrm{gt}^{2}, \mathrm{~W}=\mathrm{mgh}=\mathrm{mg} \frac{\mathrm{gt}^{2}}{2}, \mathrm{~W}=\mathrm{K}_{\mathrm{f}}-\mathrm{K}_{\mathrm{i}}$
$\frac{\mathrm{mg}^{2} \mathrm{t}^{2}}{2}=\mathrm{K}_{\mathrm{f}}-\frac{1}{2} \mathrm{mu}^{2}, \quad \mathrm{~K}_{\mathrm{f}}=\frac{1}{2} \mathrm{mu}^{2}+\frac{\mathrm{mg}^{2} \mathrm{t}^{2}}{2}$
Hence Ans. is (A)
Q. 24 (4)
$\mathrm{V}=\mathrm{O}+\mathrm{aT}, \mathrm{a}=\frac{\mathrm{V}}{\mathrm{T}}$, velocity $=\mathrm{O}+\mathrm{at}=\frac{\mathrm{Vt}}{\mathrm{T}}$
$\mathrm{K} . \mathrm{E}=\frac{1}{2}(\mathrm{~m})\left(\frac{\mathrm{Vt}}{\mathrm{T}}\right)^{2}$
Q. 25 (1)
$\mathrm{E}=\frac{1}{2} \mathrm{mV}^{2}, \frac{\mathrm{dE}}{\mathrm{dV}}=\mathrm{mV}=\mathrm{p}$
Q. 26 (4)
$\mathrm{W}_{\mathrm{G}}=\frac{1}{2} \mathrm{mV}_{\mathrm{f}}^{2}-\frac{1}{2} \mathrm{mV}_{\mathrm{i}}{ }^{2}, \mathrm{mgh}=\frac{1}{2} \mathrm{mV}_{\mathrm{f}}{ }^{2}-\frac{1}{2} \mathrm{mV}^{2}$,
So V_{f} is free from direction of V.
Q. 27 (1)

$$
\begin{array}{ll}
\mathrm{V}_{0}=\mathrm{at}_{0} & \Rightarrow \mathrm{a}=\frac{\mathrm{v}_{0}}{\mathrm{t}_{0}} \\
\therefore \mathrm{v}=\frac{\mathrm{v}_{0}}{\mathrm{t}_{0}} \cdot \mathrm{t} & \Rightarrow \mathrm{w}=\Delta \mathrm{k}=\mathrm{k}_{\mathrm{f}}-\mathrm{k}_{\mathrm{i}}
\end{array}
$$

$$
\Rightarrow \frac{1}{2} \mathrm{M} \frac{\mathrm{v}_{0}^{2}}{\mathrm{t}_{0}^{2}} \cdot \mathrm{t}^{2}
$$

Q. 28 (2)
$-\mathrm{Fx}=0-\frac{1}{2} \mathrm{~m}(2)^{2}$
and $-\mathrm{FS}=0-2\left[\frac{1}{2} \mathrm{~m}(2)^{2}\right]$
So $\frac{S}{x}=2, S=2 x$
Q. 29 (4)
$\mathrm{F} 80=\frac{1}{2} \mathrm{mV}^{2}, \mathrm{FS}=\frac{1}{2} \mathrm{~m}(2 \mathrm{~V})^{2}$
So $\frac{\mathrm{s}}{80}=4, \mathrm{~S}=4(80)$
Q. 30 (A)
$V \frac{d V}{d x}=-K x,\left[\frac{V^{2}}{2}\right]_{u}^{V}=-\left[\frac{K x^{2}}{2}\right]_{0}^{X}$
$\mathrm{V}^{2}-\mathrm{u}^{2}=-\mathrm{Kx}^{2}$
$\frac{1}{2} \mathrm{mu}^{2}-\frac{1}{2} m V^{2}=\frac{1}{2} m K x^{2}$
$\operatorname{Loss} \alpha \mathrm{x}^{2}$
Q. 31 (1)
$\mathrm{W}_{\mathrm{G}}+\mathrm{W}_{\mathrm{f}}=0-0$
$10 \times 1+\mathrm{W}_{\mathrm{f}}=0$
$10-\mu \mathrm{mg} \mathrm{x}=0$
$10=(.2)(10) \mathrm{x}, \mathrm{x}=5 \mathrm{~m}$
Q. 32 (2)

Maximum velocity will be at Mean Position
Where $\mathrm{F}_{\text {net }}=0 \Rightarrow \mathrm{mg}=\mathrm{Kx}$
$1 \times 10=2 \times 100 \times x \quad \Rightarrow \quad x=5 \mathrm{~cm}$
$\therefore \mathrm{h}=20-5=15 \mathrm{~cm}$
$\mathrm{w}=\frac{1}{2} \mathrm{k}\left(\mathrm{x}_{2}{ }^{2}-\mathrm{x}_{1}{ }^{2}\right)$
$=\frac{1}{2} 10\left(6^{2}-4^{2}\right)=100 \mathrm{~N} \mathrm{~cm}$
$=1$ joule
Q. 34 (1)
(1) $(\mathrm{mg}) 1-\mathrm{mg} / 2=\mathrm{mv}^{2} / 2, \mathrm{v}=\sqrt{\mathrm{g}}$;
$\mathrm{d}=\mathrm{v} \sqrt{2 \mathrm{~h} / \mathrm{g}}=\sqrt{\mathrm{g}} \sqrt{\frac{2(0.5)}{\mathrm{g}}}=1 \mathrm{~m}$
Q. 35 (3)

$P=F \cdot V=(R+m a) V$
Q. 36 (4)

Average power $=\frac{100 \times 9.8 \times 50}{50}=980 \mathrm{~J} / \mathrm{s}$
Q. 37 (4)
$\mathrm{V}=0+\mathrm{at}, \mathrm{F}-\mu \mathrm{mg}=\mathrm{ma}, \mathrm{F}=\mu \mathrm{mg}+\mathrm{ma}$, $\mathrm{P}=(\mu \mathrm{mg}+\mathrm{ma})$ at

Q. 38 (3)

$\mathrm{P}=\overline{\mathrm{F}} \cdot \overline{\mathrm{v}}=50-30+120=140 \mathrm{~J}$
Q. 39 (2)
$\mathrm{P}=\mathrm{TV}=4500 \times 2=9000 \mathrm{~W}=9 \mathrm{KW}$
Q. 40 (2)
$\mathrm{P}_{1}=80 \mathrm{gh} / 15, \mathrm{P}_{2}=80 \mathrm{gh} / 20$
$\frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}=\frac{20}{15}=\frac{4}{3}$
Q. 41 (3)

Given $\mathrm{m}=12000 \mathrm{~kg}, \mathrm{v}=4 \mathrm{~m} / \mathrm{sec} \& \mathrm{t}=40 \mathrm{sec}$
$\mathrm{P}_{\text {avg }}=\frac{\frac{1}{2} \mathrm{mv}^{2}}{\mathrm{t}}=\frac{\frac{1}{2} \times 12000 \times 4^{2}}{40}=2400 \mathrm{~W}=2.4 \mathrm{~kW}$
Q. 42 (2)
Q. 43 (3)

Follows from definition
Q. 44 (3)

Potential energy depends upon positions of particles
Q. 45 (1)
$\mathrm{U}_{\mathrm{i}}+0=\mathrm{U}_{\mathrm{f}}+\frac{1}{2} \mathrm{mv}^{2}$
$\mathrm{U}_{\mathrm{i}}-\mathrm{U}_{\mathrm{f}}=\frac{1}{2} \mathrm{mv}^{2}$
$\mathrm{U}=\frac{1}{2} \mathrm{mv}^{2}$
$\mathrm{m}=\frac{2 \mathrm{U}}{\mathrm{v}^{2}}$
Q. 46 (3)
$\frac{1}{2} \mathrm{mu}^{2}=\mathrm{mgh}, \mathrm{u}^{2}=2 \mathrm{gh}$
$\operatorname{mg}\left(\frac{3 h}{4}\right)+$ K.E. $=m g h$
K.E. $=\frac{\mathrm{mgh}}{4}$
$\frac{\text { K.E. }}{\text { P.E. }}=\frac{\mathrm{mgh} / 4}{3 \mathrm{mgh} / 4}=\frac{1}{3}$
Q. 47 (2)
$\mathrm{W}_{\mathrm{F}}+\mathrm{W}_{\mathrm{S}}=0, \quad \mathrm{~W}_{\mathrm{F}}-\Delta \mathrm{U}=0, \quad \mathrm{~W}_{\mathrm{F}}=\Delta \mathrm{U}=\mathrm{E}$
$\mathrm{E}=\frac{1}{2} \mathrm{~K}_{\mathrm{A}} \mathrm{X}_{\mathrm{A}}{ }^{2}, \mathrm{Fx}_{\mathrm{A}}=\frac{1}{2} \mathrm{~K}_{\mathrm{A}} \mathrm{x}_{\mathrm{A}}{ }^{2}$
$\frac{2 \mathrm{~F}}{\mathrm{~K}_{\mathrm{A}}}=\mathrm{x}_{\mathrm{A}}, \frac{2 \mathrm{~F}}{\mathrm{~K}_{\mathrm{A}}}=\sqrt{\frac{2 \mathrm{E}}{\mathrm{K}_{\mathrm{A}}}}, \mathrm{K}_{\mathrm{A}}=\frac{2 \mathrm{~F}^{2}}{\mathrm{E}}$
similarly $\mathrm{K}_{\mathrm{B}}=\frac{2 \mathrm{~F}^{2}}{\mathrm{E}_{\mathrm{B}}}, \because \mathrm{K}_{\mathrm{A}}=2 \mathrm{~K}_{\mathrm{B}} \therefore$

$$
\frac{2 \mathrm{~F}^{2}}{\mathrm{E}}=2\left(\frac{2 \mathrm{~F}^{2}}{\mathrm{E}_{\mathrm{B}}}\right)
$$

$\therefore \quad E_{B}=2 \mathrm{E}$
Alter :
$\mathrm{F}=\mathrm{K}_{\mathrm{A}} \mathrm{X}_{\mathrm{A}}=\mathrm{K}_{\mathrm{B}} \mathrm{X}_{\mathrm{B}}$
$\mathrm{E}_{\mathrm{A}}=\frac{1}{2} \mathrm{~K}_{\mathrm{A}} \mathrm{x}_{\mathrm{A}}{ }^{2}$
$\mathrm{E}_{\mathrm{B}}=\frac{1}{2} \mathrm{~K}_{\mathrm{B}} \mathrm{X}_{\mathrm{B}}{ }^{2}$
$\frac{\mathrm{E}_{\mathrm{A}}}{\mathrm{E}_{\mathrm{B}}}=\left(\frac{\mathrm{K}_{\mathrm{A}}}{\mathrm{K}_{\mathrm{B}}}\right)\left(\frac{\mathrm{x}_{\mathrm{A}}}{\mathrm{x}_{\mathrm{B}}}\right)^{2}$
$\frac{\mathrm{E}_{\mathrm{A}}}{\mathrm{E}_{\mathrm{B}}}=2\left(\frac{1}{2}\right)^{2}=\frac{1}{2}$
Q. 48 (4)
$\frac{1}{2} \mathrm{~K}(0.3)^{2}=10 \Rightarrow \mathrm{~K}=\frac{20}{0.09}=\frac{2000}{9}$
work done $=\frac{1}{2} \cdot \frac{2000}{9}\left[(0.45)^{2}-(0.3)^{2}\right]=12.5 \mathrm{~J}$
Q. 49 (1)
$u=x^{2}-3 x, x=0, x=2$
$\left(\mathrm{u}_{\mathrm{i}}\right)_{\mathrm{x}=0}=0,\left(\mathrm{u}_{\mathrm{f}}\right)_{\mathrm{x}=2}=4-6=-2$
$\Delta \mathrm{k}=-\Delta \mathrm{u}=2$ joule

Q. 50 (3)

$100=\frac{1}{2} \mathrm{~K}(2 \mathrm{~cm})^{2}, \mathrm{E}=\frac{1}{2} \mathrm{~K}(4 \mathrm{~cm})^{2}$
so $\frac{E}{100}=4, \quad E=400 J$
$\therefore E-100=300 \mathrm{~J}$
Q. 51 (1)
$\frac{1}{2} \mathrm{~K}_{2} \mathrm{x}^{2}+\frac{1}{2} \mathrm{~K}_{1} \mathrm{X}^{2}=\frac{1}{2} m \mathrm{v}^{2}$
$v=\sqrt{\frac{K_{1}+K_{2}}{m}} x$
Q. 52 (4)
$4 \mathrm{~J}=\frac{1}{2} \mathrm{k}(2)^{2}$
$\mathrm{XJ}=\frac{1}{2} \mathrm{k}(10)^{2}$
....(2)
from equation (1) \& (2)
$\mathrm{x}=100 \mathrm{~J}$
Q. 53 (3)
$\mu \mathrm{mg}=\mathrm{Kx}, \mathrm{U}=\frac{1}{2} \mathrm{Kx}^{2}=\frac{(\mu \mathrm{mg})^{2}}{2 \mathrm{~K}}$
Q. 54 (3)

For $\mathrm{m}, \mathrm{N} \cos \theta=\mathrm{mg}$
For $\mathrm{M}, \mathrm{N} \sin \theta=\mathrm{kx}$
so $\tan \theta=\frac{\mathrm{Kx}}{\mathrm{mg}}$
so $\frac{1}{2} \mathrm{Kx}^{2}=\frac{(\mathrm{mg} \tan \theta)^{2}}{2 \mathrm{~K}}$
Q. 55 (1)

$$
\mathrm{T}=\mathrm{Kx}, \mathrm{U}=\frac{1}{2} \mathrm{Kx}^{2}=\frac{1}{2} \mathrm{~K}\left(\frac{\mathrm{~T}}{\mathrm{~K}}\right)^{2}=\frac{\mathrm{T}^{2}}{2 \mathrm{~K}}
$$

Q. 56 (1)
$\mathrm{mg}\left(\mathrm{h}+\frac{3 \mathrm{mg}}{\mathrm{K}}\right)=\frac{1}{2} \mathrm{~K}\left(\frac{3 \mathrm{mg}}{\mathrm{K}}\right)^{2}$
Q. 57 (4)
$(\text { W.D })_{\text {by friction }}+(\text { W.D })_{\text {by spring }}=\Delta \mathrm{k}=\mathrm{k}_{\mathrm{f}}-\mathrm{k}_{\mathrm{i}}=0-\mathrm{k}_{\mathrm{i}}$
$-0.25 \times 1 \times 10 \times 4-\frac{1}{2} \times 2.75 \times 4^{2}=-\frac{1}{2} \times 1 \times \mathrm{v}^{2}$
$\mathrm{v}=8 \mathrm{~m} / \mathrm{s}$
Q. 58 (3)
$\frac{\mathrm{du}}{\mathrm{dr}}=0,-\frac{2 \mathrm{a}}{\mathrm{r}^{3}}+\frac{\mathrm{b}}{\mathrm{r}^{2}}=0, \mathrm{r}=\frac{2 \mathrm{a}}{\mathrm{b}}$
Q. 59 (2)
$\left.\frac{d U}{d x}\right|_{x=A}=-v e,\left.\frac{d U}{d x}\right|_{x=B}=+v e$
So, $\mathrm{F}_{\mathrm{A}}=$ positive $\quad, \mathrm{F}_{\mathrm{B}}=$ negative
Q. 60 (3)
$\mathrm{F}=-\frac{\mathrm{dU}}{\mathrm{dx}}=0$ at B and C
Q. 61 (1)

Only in (A), U is minimum for some value of r
Q. 62 (1)
$\mathrm{W}_{\mathrm{C}}=\mathrm{W}_{\mathrm{C}}+\mathrm{W}_{\mathrm{C}}=5+2=7$
$\mathrm{P} \rightarrow \mathrm{R} \quad \mathrm{P} \rightarrow \mathrm{Q} \quad \mathrm{Q} \rightarrow \mathrm{R}$

Q. 63 (1)

$\frac{\partial \mathrm{U}}{\partial \mathrm{x}}=\cos (\mathrm{x}+\mathrm{y})$,
$\frac{\partial U}{\partial y}=\cos (x+y)$
$\overline{\mathrm{F}}=-\cos (x+y) \hat{i}-\cos (x+y) \hat{j}$
$=-\cos \left(0+\frac{\pi}{4}\right) \hat{i}-\cos \left(0+\frac{\pi}{4}\right) \hat{\mathrm{j}}$
$\Rightarrow|\overline{\mathrm{F}}|=1$
Q. 64 (1), (2), (3)

From work energy theorem
$\mathrm{W}_{\mathrm{C}}+\mathrm{W}_{\mathrm{nC}}=\Delta \mathrm{K}, \mathrm{W}_{\mathrm{C}}=-\Delta \mathrm{U}, \mathrm{W}_{\mathrm{nc}}-\Delta \mathrm{U}=\Delta \mathrm{K}$
Q. 65 (1)

Area under force vs displacement gives work and area above x -axis taken as positive while area below x axis taken as negative.
$W_{\text {net }}=10 \times 1+20 \times 1-20 \times 1+10 \times 1=20$ erg.

Q. 66 (1)

$2 \mathrm{x}^{2}-3 \mathrm{x}-2=0$
$x=\frac{3 \pm \sqrt{9+16}}{4}=\frac{3 \pm 5}{4} \Rightarrow x=-\frac{1}{2}, 2$
$\frac{d F}{d x}=-\frac{d^{2} u}{d x^{2}}=4 x-3 \Rightarrow \frac{d^{2} u}{d x^{2}}=3-4 x$
$\Rightarrow\left(\frac{\mathrm{d}^{2} \mathrm{u}}{\mathrm{dx}^{2}}\right)_{\mathrm{x}=-\frac{1}{2}}=3+4 \times \frac{1}{2}$
$=(5)>0($ stable $)$
Q. 67 (1)
(1) $\mathrm{mg} \frac{\ell}{2}=\frac{1}{2} \mathrm{mv}^{2}$
$v=\sqrt{g \ell}$
Q. 68 (3)

Initially be in contact with the inner wall and later with the outer wall.
Q. 69 (2)

For light rod
$\mathrm{v}_{\text {top }}=0$
Using energy conservation
$\frac{1}{2} \mathrm{mv}^{2}+0=0+\mathrm{mg} \ell$
$\mathrm{v}=\sqrt{2 \mathrm{~g} \ell}$

JEE-ADVANCED
 OBJECTIVE QUESTIONS

Q. 1 (C)

$\mathrm{f}=$ frictional force $=\mathrm{mg} \sin \theta$
displacement of point of application in t second $=v t$ (\downarrow)
$\mathrm{W}_{\mathrm{f}}=[(\mathrm{mg} \sin \theta) \sin (180-\theta)](\mathrm{vt})=-\mathrm{mgvt} \sin ^{2} \theta$
Q. 2 (C)
$\mathrm{W}_{\text {agent }}+\mathrm{W}_{\mathrm{G}}=\Delta \mathrm{K}=0$
$\mathrm{W}_{\text {agent }}=-\mathrm{W}_{\mathrm{G}}$, But W_{G} is independent of the path joining initial and final position. W_{G} is independent of time taken.
Q. 3 (C)
W.D. $=\int \overrightarrow{\mathrm{F}} \cdot \overrightarrow{\mathrm{ds}}$
$=K \int[(y \hat{i}+x \hat{j}) \cdot(d x \hat{i}+d y \hat{j})]$
$=K \int(y d x+x d y)$
$=\mathrm{K} \int_{(1,5)}^{(3,5)} \mathrm{d}(\mathrm{xy})=20 \mathrm{~K}$

Q. 4 (B)

$\mathrm{F}=\mathrm{T}, \mathrm{W}_{\mathrm{F}}+\mathrm{W}_{\mathrm{G}}=20$
$\mathrm{W}_{\mathrm{T}}=20 \Rightarrow 20+\mathrm{W}_{\mathrm{G}}=20 \Rightarrow \mathrm{~W}_{\mathrm{G}}=0$
which is not possible.
Q. 5 (A)
$\mathrm{W}_{\mathrm{f}}+\mathrm{W}_{\mathrm{G}}=\Delta \mathrm{K}$
$-\mu \mathrm{mgd}-\mathrm{mgh}=0-\frac{1}{2} \mathrm{mv}_{0}{ }^{2}$
$\mu \mathrm{gd}+\mathrm{gh}=\frac{1}{2}\left(\mathrm{v}_{0}{ }^{2}\right)$
$(0.6)(10) \mathrm{d}+10(1.1)=18 \mathrm{~d}=\frac{7}{6}=1.1666 \approx 1.17$
(C)
$\mathrm{W}_{\mathrm{G}}-\mathrm{W}_{\mathrm{f}}=0, \mathrm{mgh}=\mu \mathrm{mg} \ell$
$\mathrm{h}=\mu \ell$
$\mathrm{h}=(0.2) \ell \Rightarrow \ell=\frac{1.5}{0.2}=7.5$
$\ell=7.5 \mathrm{~m}=(3+3+1.5) \mathrm{m}$
Q. 7 (A)
$\mathrm{W}_{\mathrm{S}}+\mathrm{W}_{\mathrm{f}}=\Delta \mathrm{K}$
$-\Delta \mathrm{U}+\mathrm{W}_{\mathrm{f}}=-\mathrm{K}_{\mathrm{i}}$
$-\mathrm{U}_{\mathrm{f}}-\mu \mathrm{mgx}=-\mathrm{K}_{\mathrm{i}}$
$\frac{1}{2} K x^{2}+\mu \operatorname{mgx}=\frac{1}{2} \mathrm{mu}^{2}$
$100 \mathrm{x}^{2}+2(0.1)(50)(10) \mathrm{x}=50 \times 4$
$x^{2}+x-2=0$
$\mathrm{x}=1 \mathrm{~m}$
Q. 8
(A)
$\mathrm{v}=\beta \sqrt{\mathrm{s}}$
$\frac{\mathrm{ds}}{\mathrm{dt}}=\beta \sqrt{\mathrm{s}}$,
$\int_{0}^{\mathrm{s}} \frac{\mathrm{ds}}{\sqrt{\mathrm{s}}}=\beta \int_{0}^{\mathrm{t}} \mathrm{dt}$
$2 \sqrt{s}=\beta t$
$\sqrt{\mathrm{s}}=\beta \mathrm{t} / 2$
$\mathrm{W}=$ workdone by all the forces $=\Delta \mathrm{K}$
$=\frac{1}{2} m v^{2}=\frac{1}{2} m \beta^{2} s=\frac{1}{2} m \beta^{2}\left(\frac{\beta^{2} t^{2}}{4}\right)$
Q. 9 (A)
$\frac{1}{2}(100)\left(\frac{10}{100}\right)^{2}=\left(\frac{250}{1000}\right)(10)\left(\frac{\mathrm{H}}{100}\right), \mathrm{H}=20 \mathrm{~cm}$.
Q. 10 (C)

Apply work energy theorem
$\mathrm{W}_{\mathrm{F}}+\mathrm{W}_{\mathrm{mg}}=\Delta \mathrm{K}=\mathrm{K}_{\mathrm{f}}-\mathrm{K}_{\mathrm{i}}\left(\mathrm{K}_{\mathrm{i}}=0\right)$
Case I: $\mathrm{F}(2)-\mathrm{mg} \times 2=\mathrm{K}$. E .
Case II : $2 \mathrm{~F}(1)-\mathrm{mg} \times 1=$ K.E.
Case III : $3 \mathrm{~F}\left(\frac{2}{3}\right)-\operatorname{mg} \times\left(\frac{2}{3}\right)=$ K.E.
In case III K.E. is maximum.
Q. 11 (C)
$\mathrm{W}_{\mathrm{R}}+\mathrm{W}_{\mathrm{G}}=0,-\mathrm{Rd}+\mathrm{mg}(\mathrm{h}+\mathrm{d})=0$
$\mathrm{R}=\mathrm{mg}\left(1+\frac{\mathrm{h}}{\mathrm{d}}\right)$

Q. 12 (B)

$\mathrm{W}=\mathrm{R} \theta \mathrm{xF} \cos 0^{\circ}$ (by the force)

$=10 \times \frac{\pi}{3} \times 200$
Work done by $\mathrm{g}=\mathrm{MgR}\left(1-\cos 60^{\circ}\right)$
$=\frac{\mathrm{gRM}}{2}$
K.E. $=R F \theta-\frac{g R M}{2}$
$\frac{1}{2} \mathrm{MV}^{2}=10 \times \frac{\pi}{3} \times 200-\frac{10 \times 10 \times 10}{2}$
$\mathrm{v}^{2}=2 \times \frac{\pi}{3} \times 200-50$
$\mathrm{V}=17.32 \mathrm{~m} / \mathrm{s}$

Q. 13 (C)
 $\mathrm{v}=\mathrm{at}$
 $=10 \sqrt{3} \mathrm{~m} / \mathrm{s}$

In ground frame
W.D. by gravity + W.D. by normal $=\Delta k$
$0+$ W.D. $_{\mathrm{N}_{\mathrm{N}}}=\frac{1}{2} \times 1 \times(10 \sqrt{3})^{2}=150 \mathrm{~J}$

Q. 14 (B)

шшшшшшшш

$\mathrm{K}=\frac{\mathrm{mg}}{\mathrm{a}}$ (Given)
$\frac{1}{2} \times \mathrm{m} \times \mathrm{v}^{2}+\frac{1}{2} \mathrm{k}\left(\frac{\mathrm{mg}}{\mathrm{k}}\right)^{2}=\mathrm{mg}\left(\frac{\mathrm{mg}}{\mathrm{k}}\right)$
$\frac{1}{2} \times m \times v^{2}+\frac{1}{2} \times \frac{m g}{a} \times \frac{m^{2} g^{2}}{m^{2} g^{2}} \times a^{2}=\frac{m^{2} g^{2}}{m g} \times a$
$\frac{1}{2} \mathrm{mv}^{2}+\frac{1}{2} \mathrm{mga}=\mathrm{mga}$
$\mathrm{v}^{2}=\mathrm{ga}$
K.E. $=\frac{1}{2} \mathrm{mv}^{2}=\frac{\mathrm{mga}}{2}$

Q. 15 (C)

$$
P=F V=m\left(\frac{d v}{d t}\right) v
$$

$\mathrm{P} \int_{0}^{\mathrm{t}} \mathrm{dt}=\mathrm{m}\left[\frac{\mathrm{v}^{2}}{2}\right]_{0}^{\mathrm{v}}$
$\mathrm{Pt}=\frac{\mathrm{mv}^{2}}{2}, \mathrm{v}^{2}=\frac{2 \mathrm{Pt}}{\mathrm{m}}, \mathrm{v}=\frac{\mathrm{ds}}{\mathrm{dt}}=\sqrt{\frac{2 \mathrm{P}}{\mathrm{m}}} \sqrt{\mathrm{t}}$
$\int_{0}^{t} d s=\sqrt{\frac{2 P}{m}} \int_{0}^{t} \sqrt{t} d t ; s \propto t^{3 / 2}$
Q. 16 (B)

On comparing
$\mathrm{F} \propto \mathrm{V}$
$\mathrm{F}=\mathrm{kV}$
$\mathrm{P}=\mathrm{F} . \mathrm{V}=\mathrm{kV}^{2}$
\Rightarrow Now $2 \mathrm{P}=\mathrm{KV}^{\prime 2}$
$2 \times \mathrm{kv}^{2}=\mathrm{kV}^{\prime 2}$
$\Rightarrow \quad \mathrm{V}^{\prime 2}=2 \mathrm{~V}^{2}$

$$
V^{\prime}=\sqrt{2} V
$$

Q. 17 (B)

$$
\begin{aligned}
& \frac{\mathrm{dW}}{\mathrm{dt}}=\frac{\mathrm{d} \cdot \mathrm{~K} \cdot \mathrm{E} .}{\mathrm{dt}}\left(\mathrm{~K} \cdot \mathrm{E}=2 \mathrm{t}^{2}\right) \\
\Rightarrow & \mathrm{P}=\left(\frac{\mathrm{dK} \cdot \mathrm{E} .}{\mathrm{dt}}\right)_{\mathrm{att}=2 \mathrm{~s}}=4 \mathrm{t}=8 \mathrm{watt}
\end{aligned}
$$

Q. 18 (B)
$\mathrm{W}_{\mathrm{ext}}+\mathrm{W}_{\mathrm{C}}+\mathrm{W}_{\mathrm{ps}}=\Delta \mathrm{K}$
Q. 19 (A)

Total energy $=\mathrm{E}=\mathrm{K} . \mathrm{E}+$ P.E.
When speed of the particle is zero.
i.e., $K . E=0$
$\Rightarrow \mathrm{U}(\mathrm{x})=\mathrm{E}$
Q. 20 (A)

Angle of Inclination
Q. 21 (D)

Only Conservative force (mg) is act.
So E.C. is done only two points
(1 and 2)
Q. 22 (B)
K.E. + P.E. $=$ constant $=\mathrm{C}($ say $)$
$K-m g\left(t u \sin \theta-\frac{1}{2}{g t^{2}}^{2}\right)=C$
$\mathrm{K}=\mathrm{mg}\left[\mathrm{tu} \sin \theta-\frac{1}{2} \mathrm{gt}^{2}\right]+\mathrm{C}[=$ parabolic $]$
$\mathrm{C} \neq 0$ so answer is (B)
Q. 23 (C)
$\frac{\mathrm{dU}}{\mathrm{dx}}=$ positive constant
For $\mathrm{x}<\mathrm{a}, \mathrm{F}=$ negative constant and for $\mathrm{x}>\mathrm{a}, \mathrm{F}=0$ so, ans. (C)
Q. 24 (A)
K.E. + P.E. $=$ positive constant C
$\mathrm{E}+\mathrm{U}=\mathrm{C}, \mathrm{E}+\mathrm{mgh}=\mathrm{C}, \mathrm{E}=-\mathrm{mgh}+\mathrm{C}$
and $\mathrm{U}=\mathrm{mgh}$,
So, answer (A)
Q. 25 (C)
$E=\frac{p^{2}}{2 m},(\sqrt{E})\left(\frac{1}{P}\right)=\frac{1}{\sqrt{2 m}}=$ constant
Rectangular hyperbola (C)

Q. 26 (B)

At $\mathrm{x}=\mathrm{x}_{2}$, as x increases, F acts along negative x direction.
So, answer (C)

Q. 27 (B)

$m g \cos \phi-N=\frac{m v^{2}}{R}$

$\mathrm{N}=\mathrm{m}\left(\mathrm{g} \cos \phi-\frac{\mathrm{v}^{2}}{\mathrm{R}}\right)$
$\because \mathrm{N}=0$
$\Rightarrow \cos \phi=\frac{\mathrm{v}^{2}}{\mathrm{Rg}}$

By energy conservation
$\frac{1}{2} \mathrm{mv}^{2}=\operatorname{mg}(\mathrm{R}-\mathrm{R} \cos \phi) \Rightarrow \mathrm{v}^{2}=2 \operatorname{Rg}(1-\cos \varphi)$
Using (i) \& (ii) $\cos \phi=\frac{2}{3}$
height from highest Point $=\mathrm{BD}=\mathrm{R}(1-\cos \phi)$
$\mathrm{h}=\mathrm{R}\left(1-\frac{2}{3}\right)=\frac{\mathrm{R}}{3} \quad$ Ans.
Q. 28 (C)
$\sqrt{5 \mathrm{Rg}}=\sqrt{5 \times 2.5 \times 10}=5 \sqrt{5}>10 \mathrm{~m} / \mathrm{s}$
$\therefore \mathrm{N}_{2}$ will be zero in part A, D, C at some point

Q. 29 (A)

$$
\begin{aligned}
& \mathrm{T}=\frac{\mathrm{Mv}^{2}}{\mathrm{R}}+\mathrm{Mg} \cos \theta \\
\Rightarrow & \Rightarrow \mathrm{MgR} \cos \theta=\frac{1}{2} \mathrm{Mv}^{2} \\
\Rightarrow & \mathrm{~T}=\frac{2 \mathrm{Mgh}=\frac{1}{2} \mathrm{Mv}^{2}}{\mathrm{R}} \quad \mathrm{Mgh} \\
& \text { (Straight line) }
\end{aligned}
$$

Q. 30 (C)

$2 \mathrm{MgR}=\frac{1}{2} \mathrm{Mv}^{2} \Rightarrow 2 \sqrt{\mathrm{gR}}=\mathrm{V}$
$\frac{\mathrm{mv}^{2}}{\mathrm{R}}=\mathrm{mg}+\mathrm{N} \Rightarrow \mathrm{N}=3 \mathrm{mg}$

JEE-ADVANCED

MCQ/COMPREHENSION/COLUMN MATCHING

Q. 1 (A,C,D)

$\mathrm{dW}_{\mathrm{F}}=\overrightarrow{\mathrm{F}} . \mathrm{d} \overrightarrow{\mathrm{s}}$, if $\overrightarrow{\mathrm{F}}$ perpendicular to ds then
$\mathrm{dW}_{\mathrm{F}}=0, \mathrm{~d} \overrightarrow{\mathrm{~S}}$ is displacement of point of application of force, $\vec{v}=\frac{\mathrm{d} \overrightarrow{\mathrm{s}}}{\mathrm{dt}}$.
(A), (C), (D) are true.
Q. 2 (A, B, C)

Follows from work energy theorem.
Q. 3 (A, B, C)

This can be explained by two blocks problem.
Q. 4 (A,B)
(A) The spring initially compressed and finally in its N.L.
(B) Initially stretched and then in its N.L.
Q. 5 (B, D)
$\mathrm{dW}_{\mathrm{F}}=\overline{\mathrm{F}} \cdot \mathrm{d} \overline{\mathrm{s}}=\mathrm{dk}>0 \Rightarrow|\overline{\mathrm{~F}}||\mathrm{d} \overline{\mathrm{s}}| \cos \theta>0$
$\Rightarrow 0<\theta<90^{\circ}$
$\mathrm{p}=\sqrt{2 \mathrm{~m}(\text { K.E. })}$, K.E. \uparrow so $\mathrm{p} \uparrow$.
Q. 6 (A, B, C)
$\mathrm{W}=\Delta \mathrm{K}, 0=\Delta \mathrm{K}, \mathrm{k}$ remains constant, speed remains constant.
$\mathrm{W}=\Delta \mathrm{K}, 0=\Delta \mathrm{K}, \mathrm{k}$
Q. 7 (B,C,D)

M.P. $x_{1}=\frac{m g}{k}$

But block further move downward due to inertia. So descending through distance

$$
x=\frac{2 m g}{k}
$$

at M.P. at $\frac{x}{2} \Rightarrow F_{\text {net }}=0$;
so $\mathrm{a}=0$

at lower most point
$\mathrm{k}\left(\frac{2 \mathrm{mg}}{\mathrm{k}}\right)-\mathrm{mg}=\mathrm{ma} \Rightarrow \mathrm{a}=\mathrm{g}$
Q. 8
(B, C)
$\mathrm{W}=\Delta \mathrm{K}>0 \Rightarrow \mathrm{~K}$ (= kinetic energy) increases
$\mathrm{p}=\sqrt{2 \mathrm{mk}}, \mathrm{p} \uparrow$ as $\mathrm{k} \uparrow$.
Q. 9 (B, C)

B and C holds when a ball moves in upward direction.
Q. 10 (A,B,C)

Given $U=3 x+4 y$
Initially particle at rest at $(6,4)$
So K.E = 0
$\mathrm{E}_{\text {total }}=\mathrm{P} . \mathrm{E}=3 \times 6+4 \times 4=34 \mathrm{~J}$
$F=-\frac{\partial U}{\partial y} \hat{i}-\frac{\partial U}{\partial y} \hat{j}=-3 \hat{i}-4 \hat{j}$
$\mathrm{a}=-3 \hat{\mathrm{i}}-4 \hat{\mathrm{j}} \Rightarrow|\mathrm{a}|=5 \mathrm{~m} / \mathrm{s}^{2}$

Let us assume particle crosses y axis after time t

$$
\mathrm{x}-6=-\frac{1}{2} \times 3 \times \mathrm{t}^{2}
$$

$$
\text { at } y \text { axis } \Rightarrow x=0 \Rightarrow t=2 \mathrm{sec}
$$

So $\mathrm{y}-4=-\frac{1}{2} \times 4 \times(2)^{2}=-8$
$y=-4 m$
(P.E.) at $\mathrm{y}=-4$ and $\mathrm{x}=0$
is $U_{(y=-4, x=0)}=-16 \mathrm{~J}$

So. K.E. = T.E. -U
$\frac{1}{2} \mathrm{MV}^{2}=34-(-16)=50$
$\mathrm{V}^{2}=100 \Rightarrow \mathrm{~V}=10 \mathrm{~m} / \mathrm{s}$
Q. 11 (B)
Q. 12 (B)

When the particle is released at $\mathrm{x}=2+\Delta$ it will reach the point of least possible potential energy (15 J) where it will have maximum kinetic energy.
$\therefore \quad \frac{1}{2} \mathrm{mv}_{\text {max }}^{2}=25 \Rightarrow \mathrm{v}_{\text {max }}=5 \mathrm{~m} / \mathrm{s}$
Q. 13 (D)
Q. 14 (B,D)

E. C between point A and B
$\operatorname{Mg}(2 R)=\frac{1}{2} M V^{2}$
$\mathrm{V}=\sqrt{4 \mathrm{gR}}<\sqrt{5 \mathrm{gR}}$
$\mathrm{V}=\sqrt{4 \mathrm{gR}}>\sqrt{2 \mathrm{gR}}$
So, doesn't complete vertical circle and break off at a height $(\mathrm{R}<\mathrm{H}<2 \mathrm{R})$

Q. 15 (A,B,D)

$N=\frac{M v^{2}}{R}+M g \cos \theta$
$\mathrm{N}_{\text {max }}$ at $\theta=0^{\circ}$
N is zero only
$\theta \geq \pi / 2$ because in this
$N=\frac{M V^{2}}{R}-M g \cos \theta$

Q. 16 (C)

To complete vertical circle
speed at point $\mathrm{B} \geq \sqrt{5 \mathrm{gR}}$
So. E.C.
$\mathrm{MgH}=\frac{1}{2} \mathrm{M}(5 \mathrm{gR})$
$\mathrm{H}=\frac{5 \mathrm{R}}{2}=2.5 \mathrm{R}$
Q. 17 (A)
Q. 18 (D)
Q. 19 (A)
Q. 20 (C)

Friction is present
\therefore Mechanical energy is not conserved
But work energy principle conserved
Due to extrenal friction force is working on the block.
Q. 21 (C)

The block will come to rest when work done by friction becomes equal to the change in energy stored in spring.
(B)

$-\frac{1}{2} \mathrm{mv}_{0}^{2}$
Q. 23 (B)

$-\frac{1}{2} \mathrm{mv}_{0}^{2}$
Q. 24 (B)

Net work done $=-\frac{1}{2} \mathrm{mv}_{0}^{2}$

Q. 26 (C)

Velocity of block with respect to observer B is zero so K.E of block = 0

Q. 27 (B)

P.E \uparrow

Due to +ve work done by N
Q. 28 (A) p, r (B) q, s (C) q, r (D) p

The displacement of A shall be less than displacement L of block B.

Hence work done by friction on block A is positive and its magnitude is less than $\mu \mathrm{mgL}$.
And the work done by friction on block B is negative and its magnitude is equal to $\mu \mathrm{mgL}$.
Therefore workdone by friction on block A plus on block B is negative its magnitude is less than $\mu \mathrm{mgL}$. Work done by F is positive. Since $\mathrm{F}>\mu \mathrm{mg}$, magnitude of work done by F shall be more than $\mu \mathrm{mgL}$.
Q. 29 (A) q, s (B) p, s (C) r, s (D) p, s
(A) The FBD of block is

Angle between velocity of block and normal reaction on block is obtuse
\therefore work by normal reaction on block is negative.
As the block fall by vertical distance h,
from work energy Theorem
Work done by mg + work done by $\mathrm{N}=\mathrm{KE}$ of block
$\therefore \mid$ work done by $\mathrm{N} \left\lvert\,=\mathrm{mgh}-\frac{1}{2} \mathrm{mv}^{2}\right.$

$$
\because \frac{1}{2} \mathrm{mv}^{2}<\mathrm{mgh}
$$

$\therefore \mid$ work done by $\mathrm{N} \mid<\mathrm{mgh}$
(B) Work done by normal reaction on wedge is positive
Since loss in PE of block $=$ K.E. of wedge + K.E. of block
Work done by normal reaction on wedge $=\mathrm{KE}$ of wedge.
\therefore Work done by $\mathrm{N}<\mathrm{mgh}$.
(C) Net work done by normal reaction on block and wedge is zero.
(D) Net work done by all forces on block is positive, because its kinetic energy has increased.
Also KE of block < mgh
\therefore Net work done on block $=$ final KE of block < mgh.

NUMERICAL VALUE BASED

Q. 1 [21 J]

Q. $2[54 \mathrm{sec}]$
Q. 3 [8]

Applying work energy theorem when block comes down by $\mathrm{x}=10 \mathrm{~cm}$

$$
\begin{aligned}
& \mathrm{w}_{\mathrm{mg}}+\mathrm{w}_{\mathrm{sf}}+\mathrm{w}_{\mathrm{f}}=0 \\
& \mathrm{mgx} \sin \theta-\frac{1}{2} k x^{2}-\mu \mathrm{mg} x \cos \theta=0
\end{aligned}
$$

on solving it gives $\mu=\frac{1}{8}$ Ans.

Q. $4 \quad[5 \mathrm{~m} / \mathrm{s}]$

Along normal their velocity are same.

$\mathrm{v}_{1} \cos \theta=\mathrm{v} \sin \theta$ at instant of touching ground.
$\cos \theta=\frac{2.5}{5}=\frac{1}{2} \Rightarrow \theta=60^{\circ} \Rightarrow \frac{\mathrm{v}_{1}}{2}=\frac{\mathrm{v} \sqrt{3}}{2}$
$\mathrm{w}_{\mathrm{g}}=\Delta \mathrm{k} \Rightarrow \mathrm{mg} \times 2.5=\frac{1}{2} \mathrm{mv}_{1}^{2} \Rightarrow 25=\frac{\mathrm{v}_{1}^{2}}{2}+\frac{3}{2} \times$
$\frac{\mathrm{v}_{1}^{2}}{3} \Rightarrow \mathrm{v}_{1}=5 \mathrm{~m} / \mathrm{s}$
Q. 5 [9600]

When the spring is compressed by 1.00 m , the sledge moves further down vertically by

$$
1.00 \times \sin 30^{\circ}=0.50 \mathrm{~m}
$$

Conservation of energy (gravitational potential energy and elastic potential energy) :
$120 \times 10 \times(3.50+0.50)=\frac{1}{2} \mathrm{k} \times 1.00^{2}$
$\mathrm{k}=9600 \mathrm{Nm}^{-1}$
Q. 6 [60]
$0.8 \times 30 \times 10^{3} \times 30=\frac{1}{2}(400) \mathrm{v}^{2}=60 \mathrm{~m} / \mathrm{s}$
Q. 7
Q. 8
. 8 [500]
$\mathrm{a}=\frac{4-2}{4+2} \mathrm{~g}=\frac{\mathrm{g}}{3}$
$\mathrm{v}_{1}=\mathrm{at}_{1}=\frac{2 \mathrm{~g}}{3}$
$\mathrm{v}_{2}=\mathrm{at}_{2}=\mathrm{g}$
$\Delta k_{a}=\frac{1}{2} M\left(v_{2}^{2}-v_{1}^{2}\right)=\frac{1}{2} \times 6\left[g^{2}-\frac{4 g^{2}}{9}\right]=$

$$
\frac{5 \mathrm{~g}^{2}}{3}=\frac{500}{3} \mathrm{~J}
$$

Q. 9 [9000]
$-\mathrm{FS}=\frac{1}{2} \mathrm{mv}^{2}-\frac{1}{2} \mathrm{mv}^{2}$
$v=\sqrt{v^{2}-\frac{2 F s}{m}}=9000 \mathrm{~m} / \mathrm{s}$
Q. 10 [640 kJ]
$\mathrm{WD}_{\mathrm{A}}=\frac{1}{2} \mathrm{~m}_{1} \mathrm{v}_{1}{ }^{2}=960 \mathrm{~kJ}$
$\mathrm{WD}_{\mathrm{B}}=\frac{1}{2} \mathrm{~m}_{2} \mathrm{v}_{2}{ }^{2}=1600 \mathrm{~kJ}$
$\mathrm{WD}_{\mathrm{B}}-\mathrm{WD}_{\mathrm{A}}=640 \mathrm{~kJ}$
Q. 11 [25]
$\mathrm{U}=\mathrm{mgh}$
$=\operatorname{mg} \frac{\mathrm{v}_{0}^{2} \sin ^{2} \theta}{2 \mathrm{~g}}=\frac{1}{2} \mathrm{mv}_{0}^{2} \sin ^{2} \theta$
$=100 \times \frac{1}{4}=25 \mathrm{~J}$
Q. 12 [20]
$\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}=0.25$
$\delta=\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}-l=0.05 \mathrm{~m}$
$2 \times \frac{1}{2} k \delta^{2}=\frac{1}{2} \mathrm{mv}^{2}$
$\mathrm{v}^{2}=2 \mathrm{gh}$
$\mathrm{kd}^{2}=\mathrm{mgh}$
$400 \times(0.05)^{2}=5 \times 10^{-3} \times 10 \times \mathrm{h} \Rightarrow \mathrm{h}=20 \mathrm{~m}$
Q. 13 [450]
$a=\frac{\left(m_{1}-m_{2}\right)}{m_{1}+m_{2}} g=\frac{4-1}{4+1} g=6 \mathrm{~m} / \mathrm{s}^{2}$
$\Delta \mathrm{k}=\frac{1}{2} \mathrm{~m}_{1} \mathrm{v}_{1}{ }^{2}+\frac{1}{2} \mathrm{~m}_{2} \mathrm{v}_{2}{ }^{2}-\frac{1}{2} \mathrm{~m}_{1} \mathrm{u}_{1}{ }^{2}-\frac{1}{2} \mathrm{~m}_{2} \mathrm{u}_{2}{ }^{2}$
$=\mathrm{m}_{1} \mathrm{gh}_{1}+\mathrm{m}_{2} \mathrm{gh}_{2}$
$=\left(m_{1}-m_{2}\right) g h$
$\mathrm{h}=0+\frac{1}{2} \mathrm{a}(2 \mathrm{n}-1)$
$=\frac{1}{2} \times 6 \times(2 \times 3-1)=15 \mathrm{~m}$
$=3 \times 10 \times 15=450 \mathrm{~J}$

Q. $14 \quad$ [75 sec.]

$\mathrm{p}=\frac{\mathrm{mgh}}{\mathrm{t}}=\frac{300 \times 10 \times 24}{\mathrm{t}}=960$
$\mathrm{t}=\frac{300 \times 10 \times 24}{960}=75 \mathrm{sec}$.
Q. 15 [6]
$F=\frac{\partial U}{\partial x} \hat{i}-\frac{\partial U}{\partial y} \hat{j}$
$\frac{-\partial U}{\partial x}=-6 x^{2}+8 x y=6 \times 3^{2}+8 \times 3 \times 2$
$\frac{-\partial U}{\partial y}=+4 x^{2}-12 y=+4 \times 3^{2}-12 \times 2=+12$
$A+B=6$
Q. 16 [10]

When the maximum speed is achieved, the propulsive force is equal to the resistant force. Let F be this propulsive force, then

$$
\mathrm{F}=\mathrm{aV} \text { and } \mathrm{FV}=600 \mathrm{~W}
$$

Eliminating F, we obtain

$$
\mathrm{V}^{2}=\frac{400}{\mathrm{a}}=100 \mathrm{~m}^{2} / \mathrm{s}^{2}
$$

and the maximum speed on level ground with no wind

$$
\mathrm{v}==10 \mathrm{~m} / \mathrm{s}
$$

KVPY

PREVIOUS YEAR'S

Q. 1 (B)
$\mathrm{mgh}=300 \times 10 \times 6$
$P_{i}=\frac{\mathrm{mgh}}{\mathrm{t}}=\frac{300 \times 10 \times 6}{60}=300 \mathrm{~W}$
$\mathrm{P}_{0}=750 \mathrm{~W}$
$\eta=\frac{300}{750} \times 100=40 \%$
Q. 2 (D)

According to work-energy principle
$\mathrm{W}_{\mathrm{C}}+\mathrm{W}_{\mathrm{nc}}+\mathrm{W}_{\mathrm{ext}}=\Delta \mathrm{KE}$
$\int_{4}^{8} F d x=\frac{1}{2} m v_{f}^{2}-\frac{1}{2} \mathrm{mv}_{\mathrm{i}}^{2}$
$\frac{1}{2} \times 3 \times 8-\frac{1}{2} \times 1.5 \times 4=\frac{1}{2} \times \frac{1}{2}\left[\mathrm{v}_{\mathrm{f}}^{2}-(3.16)^{2}\right]$
$\mathrm{v}_{\mathrm{f}}=6.8 \mathrm{~m} / \mathrm{s}$
Q. 3 (A)

According to law of conservation of mechanical energy
$\mathrm{K}_{\mathrm{i}}+\mathrm{U}_{\mathrm{i}}=\mathrm{K}_{\mathrm{f}}+\mathrm{U}_{\mathrm{f}}$
$0+\mathrm{U}_{\mathrm{i}}=0+\mathrm{U}_{\mathrm{f}}$
$h_{i}=h_{f}$
Point D is at line $A B$
Q. 4

For lower block +ve lift, $\mathrm{kx} \geq \mathrm{mg}$
$\Rightarrow \mathrm{x} \geq \frac{\mathrm{mg}}{\mathrm{k}}$

W/E theorm
$-\mathrm{mg}(\mathrm{h}+\mathrm{x})+\left(\frac{1}{2} \mathrm{kh}^{2}-\frac{1}{2} \mathrm{kx}^{2}\right)=0-0$
$\Rightarrow-\mathrm{mgh}-\frac{\mathrm{m}^{2} \mathrm{~g}^{2}}{\mathrm{k}}+\frac{1}{2} \mathrm{kh}^{2}-\frac{1}{2} \frac{\mathrm{~m}^{2} \mathrm{~g}^{2}}{\mathrm{k}}=0$
$\frac{\mathrm{kh}^{2}}{2}-\mathrm{mgh}-\frac{3 \mathrm{~m}^{2} \mathrm{~g}^{2}}{2 \mathrm{k}}=0$
$\mathrm{h}=\frac{\mathrm{mg} \pm \sqrt{\mathrm{m}^{2} \mathrm{~g}^{2}+3 \mathrm{~m}^{2} \mathrm{~g}^{2}}}{\mathrm{k}}$
$=\frac{\mathrm{mg} \pm 2 \mathrm{mg}}{\mathrm{k}}=\frac{3 \mathrm{mg}}{\mathrm{k}}, \frac{-\mathrm{mg}}{\mathrm{k}}$
$\therefore \mathrm{h}=\frac{3 \mathrm{mg}}{\mathrm{k}}$
$\mathrm{W}+\mathrm{mg}=\mathrm{kh}$
$\mathrm{W}+\mathrm{mg}=3 \mathrm{mg}$
$\mathrm{W}=2 \mathrm{mg}$
Q. 5
(C)
$\mathrm{W}_{\mathrm{f}}+\mathrm{W}_{\mathrm{mg}}=\Delta$ K.E., $(\Delta$ K.E. $=0)$
$\mathrm{W}_{\mathrm{f}}=-\mathrm{W}_{\mathrm{mg}}$
$\mathrm{W}_{\mathrm{f}}=-\mathrm{mgh}$
\therefore Energy dissipated $=\mathrm{mgh}$
Q. 6 (C) $\frac{-\mathrm{dU}}{\mathrm{dx}}=\mathrm{F},\left(\frac{\mathrm{dU}}{\mathrm{dx}}\right)_{\mathrm{x}=0}=0$ and $\left(\frac{\mathrm{d}^{2} \mathrm{U}}{\mathrm{dx}^{2}}\right)_{\mathrm{x}=0}=0$
Q. 7 (A)
$m g H-2 \mu m g(d+x)-m g h=0$
$\mathrm{h}=\mathrm{H}-2 \mu(\mathrm{~d}+\mathrm{x})$
Q. 8 (B)

$$
\begin{aligned}
& \frac{1}{2} m v^{2}+0=0+1 \\
& \mathrm{v}^{2}=4 \text { or } \mathrm{v}=2 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Q. 9 (A)

When box is dropped from a height h, then speed at ground is v , therefore using mechanical energy conservation

$$
\begin{equation*}
\mathrm{mgh}=\frac{1}{2} \mathrm{mv}^{2} \tag{1}
\end{equation*}
$$

when body slides on rough inclined plane, friction force will also act $\mathrm{f}=\mu \mathrm{N}=\mu \mathrm{mg} \cos \theta$ Applying workenergy theorem

$$
\begin{aligned}
& \mathrm{mgh}-\mathrm{fs}=\frac{1}{2} \mathrm{~m}\left(\frac{\mathrm{v}}{3}\right)^{2}-0 \\
& \mathrm{mgh}-\mathrm{f} .=\frac{\mathrm{h}}{\sin \theta}=\frac{1}{2} \mathrm{~m}\left(\frac{\mathrm{v}}{3}\right)^{2} \\
& \left(\sin \theta=\frac{\mathrm{h}}{\mathrm{~s}}\right)
\end{aligned}
$$

$$
\begin{equation*}
\mathrm{mgh}-\mu \mathrm{mg} \cos \theta \times \frac{\mathrm{h}}{\sin \theta}=\frac{1}{2} \frac{\mathrm{mv}^{2}}{9} \tag{ii}
\end{equation*}
$$

from equation (i) \& (ii)
$\operatorname{mgh}[1-\mu \cot \theta]=\left(\frac{1}{9}\right) \mathrm{mgh}$
putting $\theta=45^{\circ}, \quad \cot \theta=1$
$1-\mu=\frac{1}{9}$
$\Rightarrow \mu=\frac{8}{9}$
Q. 10 (B)

Centripetal force at point A :
$\mathrm{T}_{1}-\mathrm{mg}=\frac{\mathrm{mv}^{2}}{\ell}$
At point B :
$\mathrm{T}_{2}=\mathrm{mg} \cos \theta$
According to question
$\mathrm{T}_{1}=4 \mathrm{~T}_{2}$
$\Rightarrow \mathrm{mg}+\frac{\mathrm{mv}^{2}}{\ell}=4 \mathrm{mg} \cos \theta \quad$ [from equation (1) \&
(2)]
$\Rightarrow \operatorname{mg}(4 \cos \theta-1)=\frac{\mathrm{mv}^{2}}{\ell}$
According to conservation of energy between point A and B
Also $\frac{1}{2} \mathrm{mv}^{2}+0=0+\mathrm{mg} \ell(1-\cos \theta)$
$\mathrm{mv}^{2}=2 \mathrm{mg} \ell(1-\cos \theta)$
$\frac{m v^{2}}{\ell}=2 m g(1-\cos \theta)$
From equation (4) \& (5)
$\mathrm{mg}(4 \cos \theta-1)=2 \mathrm{mg}(1-\cos \theta)$
$\Rightarrow 4 \cos \theta-1=2-2 \cos \theta$
$\Rightarrow 6 \cos \theta=3$
$\Rightarrow \cos \theta=\frac{1}{2}$
$\Rightarrow \theta=60^{\circ}$
Q. 11 (C)
Δ K.E. $=0-\frac{1}{2} \mathrm{mv}^{2}$
Δ K.E. $=-\frac{1}{2} 75(2)^{2}$
Δ K.E. $=-150 \mathrm{~J}$
Total work done by forces $=-150 \mathrm{~J}$
-F. $\Delta \mathrm{x}=-150 \mathrm{~J}$
$\mathrm{F}=\frac{150}{\Delta \mathrm{x}}($ avg force $)$
$F=\frac{150}{0.25} \Rightarrow F=600 \mathrm{~N}$ (upward direction)
$F_{R}-m g=F$

$\mathrm{F}_{\mathrm{R}}=\mathrm{F}+\mathrm{mg}$
$\mathrm{F}_{\mathrm{R}}=600+750$
$\mathrm{F}_{\mathrm{R}}=1350 \mathrm{~N}$
(resistive force by ground)
Q. 12 (B)
$500 \mathrm{~m}\left[\begin{array}{r}\mathrm{P}=\frac{\mathrm{mah}}{\text { time }} \\ \eta=\frac{\mathrm{P}_{\text {out }}}{\mathrm{P}_{\text {input }}} \\ \mathrm{P}_{\text {in }}=\frac{\mathrm{P}_{\text {out }}}{\eta}\end{array}\right.$
$=\frac{10^{9}}{0.5}$
$\mathrm{P}_{\text {in }}=2 \times 10^{9}$
$\frac{\mathrm{mah}}{\text { time }}=2 \times 10^{9}$
$\mathrm{m} / \mathrm{t}=\frac{2 \times 10^{9}}{10 \times 500}=\frac{2}{5} \times 10^{6}$
$=4 \times 10^{5}$
$=400 \mathrm{~m}^{3}$

Q. 13 (C)

at $\mathrm{t}=0, \mathrm{x}=0.5$
$u=\frac{x^{4}}{4}-\frac{x^{2}}{2} \Rightarrow \frac{1}{4} \times \frac{1}{16} \times \frac{1}{4} \times \frac{1}{2} \Rightarrow\left|\frac{1}{4}\right|$
$\frac{d u}{d x}=\frac{4 x^{3}}{4}-\frac{2 x}{2}=x^{3}-x$
$\frac{d u}{d x}=x\left(x^{2}-1\right)$
$\frac{\mathrm{du}}{\mathrm{dx}}=0 \quad$ at point of maxima \& minima
$\mathrm{x}=0 ; \quad \mathrm{x}= \pm 1$
$\left(\frac{d^{2} u}{d x^{2}}\right)_{x=0}=-1$ point of maxima
$\left(\frac{d^{2} u}{d x^{2}}\right)_{x= \pm 1}=2$ point of minima

particle will found between $(-1,0)$
Q. 14 (A)

From work energy theorem

$$
\begin{gathered}
\operatorname{mg}(\mathrm{R}-\mathrm{h})=\frac{1}{2} m v^{2} \\
\quad \mathrm{v}=\sqrt{2 \mathrm{~g}(\mathrm{R}-\mathrm{h})}
\end{gathered}
$$

JEE MAIN

PREVIOUS YEAR'S

Q. 1
 (3)

$$
\begin{aligned}
& \mathrm{T}_{\max }=\mathrm{mg}+\frac{\mathrm{mv}^{2}}{\ell} \\
& \& \mathrm{~T}_{\min }=\frac{\mathrm{m}}{\ell}\left(\mathrm{v}^{2}-4 \mathrm{~g} \ell\right)-\mathrm{mg}
\end{aligned}
$$

$$
\therefore \frac{5}{1}=\frac{\mathrm{g}+\frac{\mathrm{v}^{2}}{\ell}}{\left(\frac{\mathrm{v}^{2}}{\ell}-5 \mathrm{~g}\right)}
$$

$$
\therefore \quad \frac{5 \mathrm{v}^{2}}{\ell}-25 \mathrm{~g}=\mathrm{g}+\frac{\mathrm{v}^{2}}{\ell}
$$

$\therefore \quad \frac{4 \mathrm{v}^{2}}{\ell}=26 \mathrm{~g}$

$$
\begin{array}{ll}
\mathrm{v}^{2}=\frac{13}{2} \mathrm{~g} \ell & \frac{\mathrm{C}}{\mathrm{r}^{2}}=\frac{\mathrm{mv}^{2}}{\mathrm{r}} \\
\mathrm{v}^{2}{ }_{\text {min }}=\left(5 \mathrm{~g}_{\ell} / 2\right) & \mathrm{v}^{2} \propto \frac{1}{\mathrm{r}}
\end{array}
$$

Q. 2 (2)

Given, $\mathrm{m}=0.5 \mathrm{~kg}$ and $\mathrm{u}=20 \mathrm{~m} / \mathrm{s}$
Initial kinetic energy $(\mathrm{ki})=\frac{1}{2} \mathrm{mu}^{2}$
$=\frac{1}{2} \times 0.5 \times 20 \times 20=100 \mathrm{~J}$
After deflection it moves with 5% of k_{i}
$\therefore \mathrm{k}_{\mathrm{f}}=\frac{5}{100} \times \mathrm{k}_{\mathrm{i}} \Rightarrow \frac{5}{100} \times 100$
$\Rightarrow \mathrm{k}_{\mathrm{f}}=5 \mathrm{~J}$
Now, let the final speed be ' v ' m / s, then :
$\mathrm{k}_{\mathrm{f}}=5=\frac{1}{2} \mathrm{mv}^{2}$
$\Rightarrow \mathrm{v} 2=20$
$\Rightarrow \mathrm{v}=\sqrt{20}=4.47 \mathrm{~m} / \mathrm{s}$
Q. 3 (2)
$\mathrm{P}=\mathrm{C}$
$\mathrm{FV}=\mathrm{C}$
$M \frac{d V}{d t} V=C$
$\frac{\mathrm{V}^{2}}{2} \propto \mathrm{t}$
$\mathrm{V} \propto \mathrm{t}^{1 / 2}$
$\frac{\mathrm{dx}}{\mathrm{dt}} \propto \mathrm{t}^{1 / 2}$
$\mathrm{x} \propto \mathrm{t}^{3 / 2}$
Q. 4 (10)

Using work energy theorem,
$\mathrm{Wg}=\Delta$ K.E.
$(10)(\mathrm{g})(5)=\frac{1}{2}(10) \mathrm{v} 2-0$
$\mathrm{v}=10 \mathrm{~m} / \mathrm{s}$
Q. 5 (1)
$\mathrm{U}=\frac{\mathrm{C}}{\mathrm{r}}$
$\mathrm{F}=-\frac{\mathrm{dU}}{\mathrm{dr}}=-\frac{\mathrm{C}}{\mathrm{r}^{2}}$
$|\mathrm{F}|=\frac{\mathrm{mv}^{2}}{\mathrm{r}}$

Q. 6 (6)

Let's say the compression in the spring by : y.
So, by work energy theorem we have
$\Rightarrow \frac{1}{22} \mathrm{mv}^{2}=-\frac{1}{\mathrm{ky}^{2}}$
$\Rightarrow \mathrm{y}=\sqrt{\frac{\mathrm{m}}{\mathrm{k}}} \cdot \mathrm{v}$
$\Rightarrow y=\sqrt{\frac{4}{100}} \times 10$
$\Rightarrow \mathrm{y}=2 \mathrm{~m}$
\Rightarrow final length of spring
$=8-2=6 \mathrm{~m}$
Q. 7 (2)
Q. 8 [450]
Q. 9 (2)
Q. 10 (4)
Q. 11 (1)

Work done $=$ Change in kinetic energy

$$
\mathrm{W}_{\mathrm{mg}}+\mathrm{W}_{\text {air-ficicion }}=\frac{1}{2} \mathrm{~m}(.8 \sqrt{\mathrm{gh}})^{2}-\frac{1}{2} \mathrm{~m}(0)^{2}
$$

$\mathrm{W}_{\text {airffiction }}=\frac{.64}{2} \mathrm{mgh}-\mathrm{mgh}=-0.68 \mathrm{mgh}$

Option (1)

Q. 12 [400]
Q. 13 (1)
Q. 14 [40]
Q. 15 [16]

Work $=\Delta$ K.E.
$\mathrm{W}_{\text {fricion }}+\mathrm{W}_{\text {Spring }}=0-\frac{1}{2} \mathrm{mv}^{2}$
$-\frac{90}{100}\left(\frac{1}{2} \mathrm{mv}^{2}\right)+\mathrm{W}_{\text {Spring }}=-\frac{1}{2} \mathrm{mv}^{2}$
$\mathrm{W}_{\text {Spring }}=-\frac{10}{100} \times \frac{1}{2} \mathrm{mv}^{2}$

$$
\begin{aligned}
& -\frac{1}{2} \mathrm{kx}^{2}=-\frac{1}{20} \mathrm{mv}^{2} \\
& \Rightarrow \mathrm{k}=\frac{40000 \times(20)^{2}}{10 \times(1)^{2}}=16 \times 10^{5}
\end{aligned}
$$

JEE-ADVANCED

PREVIOUS YEAR'S

Q. 1 (D)
suppose $\mathrm{x}=\mathrm{r} \cos \theta$
$y=r \sin \theta$
force on particle is $\frac{K}{r^{3}}(r \cos \theta \hat{\mathrm{i}}+r \sin \theta \hat{\mathrm{j}})$
force is in radial direction so work done by this force along given path (circle) is zero.
Q. 2 [5]

$$
\begin{aligned}
& \mathrm{E}=\mathrm{P} . \mathrm{t}=0.5 \mathrm{~W} \times 5 \mathrm{~s}=2.5 \mathrm{~J} \\
& =\frac{1}{2} \mathrm{mv}^{2} \Rightarrow \mathrm{v}=5 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Q. 3 [5]

$$
\mathrm{W}_{\mathrm{F}}+\mathrm{W}_{\mathrm{g}}=\mathrm{K}_{\mathrm{f}}-\mathrm{K}_{\mathrm{i}}
$$

$$
18 \times 5+1 \mathrm{~g}(-4)=\mathrm{K}_{\mathrm{f}}
$$

$$
90-40=\mathrm{K}_{\mathrm{f}}
$$

$$
\mathrm{K}_{\mathrm{f}}=50 \mathrm{~J}=5 \times 10 \mathrm{~J}
$$

Q. 4 [0.75]
$F=(\alpha y \hat{i}+2 \alpha x \hat{j})$
$W_{A B}=(-1 \hat{\mathrm{i}}.) \cdot(1 \hat{\mathrm{i}})=.-1 \mathrm{~J}$
$\left[\begin{array}{l}\overrightarrow{\mathrm{F}}=-1 \mathrm{i}+2 \alpha \mathrm{x} \hat{\mathrm{j}} \\ \overrightarrow{\mathrm{S}}=1 \hat{\mathrm{i}}\end{array}\right]$
Similarly,
$\mathrm{W}_{\mathrm{BC}}=1 \mathrm{~J}$
$\mathrm{W}_{\mathrm{CD}}=0.25 \mathrm{~J}$
$\mathrm{W}_{\mathrm{DE}}=0.5 \mathrm{~J}$
$\mathrm{W}_{\mathrm{EF}}=\mathrm{W}_{\mathrm{FA}}=0 \mathrm{~J}$
\therefore New work in cycle $=0.75 \mathrm{~J}$
Q. $5 \quad[\mathrm{~A}, \mathrm{D}]$

By the energy conservation (ME) between bottom point and point Y
$\frac{1}{2} \mathrm{mv}_{0}^{2}=\mathrm{mgh}+\frac{1}{2} \mathrm{mv}_{1}^{2}$
$\therefore \mathrm{v}_{1}^{2}=\mathrm{v}_{0}^{2}-2 \mathrm{gh}$
Now at point Y the centripetal force provided by the component of mg
$\therefore \mathrm{mg} \sin 30^{\circ}=\frac{\mathrm{mv}_{1}^{2}}{\mathrm{R}}$
$\therefore \mathrm{v}_{1}^{2}=\frac{\mathrm{gR}}{2}$
\therefore from (i)
$\frac{\mathrm{gR}}{2}=\mathrm{v}_{0}^{2}-2 \mathrm{gh}$
At point x and z of circular path, the points are at same height but less then h. So the velocity more than a point y.
So required centripetal $=\frac{\mathrm{mv}^{2}}{\mathrm{r}}$ is more.

Center of Mass

ELEMENTARY

Q. 1
(4)
self explainatory
Q. 2 (2)

Centre of mass is nearer to heavier mass
Q. 3 (3)
$\mathrm{r}=1.27 \AA$
$\mathrm{r}_{\mathrm{cm}} \frac{\mathrm{m}_{1} \mathrm{r}_{1}+\mathrm{m}_{2} \mathrm{r}_{2}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}$
Since centre of mass cannot go beyond bond length $\mathrm{r}_{\mathrm{cm}} \frac{0+35.5 \times 1.27}{35.5+10}=\frac{35.5 \times 1.27}{36.5}=1.24 \AA$
Q. 4 (3)
Q. 5 (2)
Q. 6 (2)
Q. 7 (2)
Q. 8 (4)
Q. 9 (1)

Body at rest may possess potential energy.
Q. 10 (4)

$$
a_{\mathrm{cm}}=\frac{\mathrm{m}_{1} \mathrm{~g}+\mathrm{m}_{2} \mathrm{~g}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}=\mathrm{g}
$$

Q. 11 (1) vector sum of internal forces on system is zero.
Q. 12 (2)
Q. 13 (1)
Q. 14 (3)

$$
\begin{aligned}
& \mathrm{P}=\sqrt{2 \mathrm{mE}} \\
& \therefore \mathrm{P} \propto \sqrt{\mathrm{~m}} \quad \text { (if } \mathrm{E}=\text { const. })
\end{aligned}
$$

$$
\therefore \quad \frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}=\sqrt{\frac{\mathrm{m}_{1}}{\mathrm{~m}_{2}}}
$$

Q. 15 (2)
Q. 16 (3)

Initial momentum of 3 m mass $=0$
...(i)
Due to explosion this mass splits into three fragments of equal masses.
Final momentum of system $=m \vec{V}+m v \hat{i}+m v \hat{j}$

By the law of conservation of linear momentum

$$
m \vec{V}+m v \hat{i}+m v \hat{j}=0 \Rightarrow \vec{V}=-v(\hat{i}+\hat{j})
$$

Q. 17 (4)
Q. 18 (1)

Area of F-t curve $=\mathrm{A}=$ Impulse.
Impulse $=\mathrm{dP}=\mathrm{A}=\mathrm{mv}-0$
$\therefore \mathrm{v}=\frac{\mathrm{A}}{\mathrm{M}}$.
Q. 19 (1)
Q. 20 (1)

If mass $=m$
first ball will stop
$\Rightarrow \mathrm{v}=0$
so: K.E. $=0(\mathrm{~min})$
In other cases there will be some kinetic energy (K.E. can't be negative)

Q. 21 (3)

According to law of conservation of linear momentum both pieces should possess equal momentum after explosion. As their masses are equal therefore they will possess equal speed in opposite direction.
Q. 22 (3)

Initial linear momentum of system $=m_{A} \vec{v}_{A}+m_{B} \vec{v}_{B}$ $=0.2 \times 0.3+0.4 \times v_{\text {B }}$
Finally both balls come to rest
\therefore final linear momentum $=0$
By the law of conservation of linear momenum

$$
\begin{aligned}
& 0.2 \times 0.3+0.4 \times \mathrm{v}_{B}=0 \\
& \therefore \quad v_{B}=-\frac{0.2 \times 0.3}{0.4}=-0.15 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Q. 23 (1)

$$
\begin{aligned}
& \mathrm{v}_{1}=\frac{\left(\mathrm{m}_{1}-\mathrm{em}_{2}\right) \mathrm{u}_{1}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}+\frac{\mathrm{m}_{2}(1+\mathrm{e}) \mathrm{u}_{2}}{\mathrm{~m}_{1}+\mathrm{m}_{2}} \\
& =\frac{(\mathrm{m}-\mathrm{e} 2 \mathrm{~m}) \mathrm{u}_{1}}{\mathrm{~m}+2 \mathrm{~m}}+\frac{2 \mathrm{~m}(1+\mathrm{e}) \times 0}{\mathrm{~m}+2 \mathrm{~m}}=0 \\
& \Rightarrow 0=\mathrm{m}-\mathrm{e} 2 \mathrm{~m} \\
& \Rightarrow \mathrm{e}=1 / 2
\end{aligned}
$$

Q. 24 (1)

$\mathrm{v}_{1}=\left(\frac{\mathrm{m}_{1}-\mathrm{m}_{2}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}\right) \mathrm{u}_{1}+\frac{2 \mathrm{~m}_{2} \mathrm{u}_{2}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}$
Substituting $\mathrm{m}_{1}=0, \mathrm{v}_{1}=-\mathrm{u}_{1}+2 \mathrm{u}_{2}$ $\Rightarrow \mathrm{v}_{1}=-6+2(4)=2 \mathrm{~m} / \mathrm{s}$
i.e. the lighter particle will move in original direction with the speed of $2 \mathrm{~m} / \mathrm{s}$.
Q. 25 (2)

Impulse $=$ change in momentum
$\mathrm{mv}_{2}-\mathrm{mv}_{1}=0.1 \times 40-0.1 \times(-30)$

Q. 26 (4)

By the conservation of momentum
$40 \times 10+(40) \times(-7)=80 \times v \Rightarrow v=1.5 \mathrm{~m} / \mathrm{s}$
Q. 27 (4)

Due to elastic collision of bodies having equal mass, their velocities get interchanged.
Q. 28 (3)

Initial momentum of the system $=\mathrm{mv}-\mathrm{mv}=0$
As body sticks together
\therefore final momentum $=2 \mathrm{mV}$
By conservation of momentum $2 \mathrm{mV}=0$
$\therefore \quad \mathrm{V}=0$
Q. 29 (2)

By momentum conservation before and after collision.

$$
\mathrm{m}_{1} \mathrm{~V}+\mathrm{m}_{2} \times 0=\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right) \mathrm{v}
$$

$\Rightarrow \mathrm{v}=\frac{\mathrm{m}_{1}}{\mathrm{~m}_{1}+\mathrm{m}_{2}} \mathrm{~V}$
i.e. Velocity of system is less than V.

JEE-MAIN

OBJECTIVE QUESTION

Q. 1 (4)

Centre of mass is a point which can lie within or outside the body.
Q. 2 (1)

$y_{c m}=\frac{0 \times(2 \rho)+2 \times 5 \rho \times 2}{2(\rho) 6+2 \times 5 \times \rho}=\frac{10}{11}$
$4-\frac{10}{11}=\frac{34}{11}$
Q. 3 (4)
$\mathrm{A}_{1}=2 \mathrm{r} \times \mathrm{r}=2 \mathrm{r}^{2}$
$\mathrm{A}_{2}=\frac{\pi \mathrm{r}^{2}}{2}$
$\mathrm{x}_{1}=\frac{\mathrm{r}}{2}$
$x_{2}=\frac{4 r}{3 \pi}$
$\mathrm{x}_{\mathrm{cm}}=\frac{2 \mathrm{r}^{2} \times \frac{\mathrm{r}}{2}-\frac{\pi \mathrm{r}^{2}}{2} \times \frac{4 \mathrm{r}}{3 \pi}}{2 \mathrm{r}^{2}-\frac{\pi \mathrm{r}^{2}}{2}}=\frac{\mathrm{r}^{3}\left[1-\frac{2}{3}\right]}{\mathrm{r}^{2}\left[\frac{4-\pi}{2}\right]}=\frac{2 \mathrm{r}}{3[4-\pi]}$
Q. 4 (4) centre of mass is at a height of $\mathrm{h} / 4$ from base.
Q. 5 (3)
Q. 6 (3)

Centre of mass of two particle system lies on the line joining the two particles
(3)
Q. 8
(2)
$y_{c m}=0$
$\frac{1}{8} \times 0.14+\frac{7}{8} \times h=0$
$\therefore \frac{7 \mathrm{~h}}{8}=-\frac{0.14}{8} \Rightarrow \mathrm{~h}=-0.02$ below x -axis.
Q. 9 (2)

Let x be the displacement of man. Then displacement of plank is $\mathrm{L}-\mathrm{x}$.
For centre of mass to remain stationary

$$
\begin{aligned}
& \frac{M}{3}(L-x)=M . x \\
& \Rightarrow \quad \mathrm{x}=\frac{\mathrm{L}}{4}
\end{aligned}
$$

Q. 10 (1)
$\overrightarrow{\mathrm{F}}_{\text {net }}=0$
so $\vec{a}_{\text {com }}=0$

$\mathrm{m}_{1} \overrightarrow{\mathrm{a}}_{1}+\mathrm{m}_{2} \overrightarrow{\mathrm{a}}_{2}=0$
$100 \times a_{1}+250(-10)=0$
$\mathrm{a}_{1}=25 \mathrm{~cm} / \mathrm{sec}^{2}$ east

Q. 11 (3)

Centre of mass hits the ground at the position where original projectile would have landed.

$\frac{\mathrm{m} \cdot \mathrm{R}}{2}=2 \mathrm{mx}_{1} \Rightarrow \mathrm{x}_{1}=\frac{\mathrm{R}}{4}$
\therefore Distance $=\mathrm{R}+\frac{\mathrm{R}}{4}=\frac{5 \mathrm{R}}{4}$

Q. 12 (1)

$\mathrm{v}_{\mathrm{cm}}=\frac{1 \times 2+\frac{1}{2} \times 6}{1+1 / 2}=\frac{10}{3} \mathrm{~m} / \mathrm{sec}$.
Q. 13 (4)
$\mathrm{v}_{\mathrm{cm}}=\frac{\mathrm{m}_{1} \mathrm{v}_{1}+\mathrm{m}_{2} \mathrm{v}_{2}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}$
$\therefore \mathrm{v}_{\mathrm{cm}}=\frac{\mathrm{m}(2 \hat{\mathrm{i}})+\mathrm{m}(2 \hat{\mathrm{j}})}{2 \mathrm{~m}}$
$a_{c m}=\frac{m(i+j)+m(0)}{2 m}$.
v_{cm} has same direction as of a_{cm}
\therefore straight line.
Q. 14 (3)
$\mathrm{a}=\frac{(\mathrm{nm}-\mathrm{m})}{\mathrm{nm}+\mathrm{m}} \mathrm{g}$
$=\frac{(\mathrm{n}-1)}{(\mathrm{n}+1)} \mathrm{g}$
$\mathrm{a}_{1}=\mathrm{a}_{2}=\mathrm{a}$
$\mathrm{a}_{\mathrm{cm}}=\frac{\mathrm{nma}_{1}-\mathrm{ma}_{2}}{(\mathrm{~nm}+\mathrm{m})}=\frac{(\mathrm{n}-1)}{(\mathrm{n}+1)} \times \mathrm{a}$

$\mathrm{a}_{\mathrm{cm}}=\frac{(\mathrm{n}-1)^{2}}{(\mathrm{n}+1)^{2}} \mathrm{~g}$.

Q. 15 (4)

Q. 16 (2)
Q. 17 (2)
Q. 18 (1)
$\mathrm{v}_{\mathrm{cm}}=0$
$\operatorname{mv}_{\mathrm{B}}+\mathrm{m}\left(\mathrm{v}_{\mathrm{B}}+\mathrm{v}_{\text {rel }}\right)=0$
$\therefore \mathrm{v}_{\mathrm{B}}=-\frac{\mathrm{mv}_{\mathrm{rel}}}{\mathrm{m}+\mathrm{M}}$

- sign means baloon moves downward
Q. 19 (3)

Centre of mass will not move in horizontal direction.
Let x be the displacement of boat.
$80(8-\mathrm{x})=200 \mathrm{x}$
$640-80 x=200 x$
$\mathrm{x}=2.3 \mathrm{~m}$
Now, Required
distance from the shore.
$=20-(8-x)$

$$
\begin{aligned}
& =20-(8-2.3) \\
& =20-5.7 \\
& =14.3 \mathrm{~m}
\end{aligned}
$$

Q. 20 (3)
C_{1} will move but C_{2} will be stationary with respect to the ground.
Q. 21 (2)

Velocity become double.
Q. 22 (1)
$500 \times 10=550 \times v$
$\mathrm{v}=\frac{500}{55}=\frac{100}{11} \mathrm{~m} / \mathrm{s}$.
Q. 23 (2)
$\mathrm{V}_{\text {com }}=\mathrm{V} \cos \theta$
$\mathrm{V} \cos \theta=\frac{-\mathrm{m} 0+\mathrm{mv}_{2}}{2 \mathrm{~m}}$
$\therefore \mathrm{v}_{2}=2 \mathrm{~V} \cos \theta$

Q. 24 (4)

Speed is constant so K.E. \rightarrow Constant Gravitational potential energy change.
\because Momentum $=\mathrm{mv}$
\because Direction of $\overrightarrow{\mathrm{v}}$ changes
\therefore Momentum changes
Q. 25 (4)
$\frac{\mathrm{P}^{2}}{2 \mathrm{~m}}=$ K.E.
$\ln \frac{\mathrm{P}^{2}}{2 \mathrm{~m}}=\ln \mathrm{K}$.E.
$2 \ln \mathrm{P}-\ln (2 \mathrm{~m})=\ln \mathrm{K} . \mathrm{E}$.
So the graph between $\ln p \& \operatorname{lnk}$ is straight line with intercept.

Q. 26 (2)

Here net force $=0$
means momentum is conserved.
$\mathrm{p}_{\mathrm{i}}=\mathrm{p}_{\mathrm{f}}$
$0=\overrightarrow{\mathrm{p}}_{1}+\overrightarrow{\mathrm{p}}_{2} \Rightarrow \overrightarrow{\mathrm{p}}_{1}=-\overrightarrow{\mathrm{p}}_{2}$
K.E. $=\frac{\mathrm{p}^{2}}{2 \mathrm{~m}} \Rightarrow \therefore \frac{\mathrm{~K}_{1}}{\mathrm{~K}_{2}}=\frac{\mathrm{m}_{2}}{\mathrm{~m}_{1}}$
Q. 27 (1)

According to Newton's second law of motion.
$\vec{F}=\frac{\mathrm{d} \overrightarrow{\mathrm{p}}}{\mathrm{dt}}$
If $\overrightarrow{\mathrm{F}}_{\text {net }}=0$
then $\overrightarrow{\mathrm{p}}=$ conserved
Q. 28 (3)
$\mathrm{P}_{\mathrm{i}}=\mathrm{mv}_{1}+m v_{2}$
$P_{f}=(m+M) v$
$P_{i}=P_{f} \Rightarrow v=\frac{\mathrm{mv}_{1}+M v_{2}}{(m+M)}$
By energy consarvation
$\frac{1}{2} \mathrm{mv}_{1}{ }^{2}+\frac{1}{2} \mathrm{Mv}_{2}{ }^{2}=\frac{1}{2}(\mathrm{M}+\mathrm{m}) \mathrm{v}^{2}+\frac{1}{2} \mathrm{kx}^{2}$
$\Rightarrow \mathrm{mv}_{1}{ }^{2}+\mathrm{Mv}_{2}{ }^{2}=(\mathrm{M}+\mathrm{m}) \frac{\left(\mathrm{mv}_{1}+\mathrm{Mv}_{2}\right)^{2}}{(\mathrm{M}+\mathrm{m})^{2}}+\mathrm{kx}^{2}$
solving $x=\left(v_{1}-v_{2}\right) \sqrt{\frac{m M}{(M+m) k}}$.
Q. 29 (1)

Initial momentum of body $=\mathrm{mv}$ \& final momentum of body $=-m v$ Change in momentum $=2 \mathrm{mv}$
Q. 30 (3)
$\overrightarrow{\mathrm{F}}_{\text {net }}=0$
then $\overrightarrow{\mathrm{p}}=$ conserved
$\overrightarrow{\mathrm{p}}_{1}+\overrightarrow{\mathrm{p}}_{2}+\overrightarrow{\mathrm{p}}_{3}=0$
$\overrightarrow{\mathrm{p}}_{3}=-\left(\overrightarrow{\mathrm{p}}_{1}+\overrightarrow{\mathrm{p}}_{2}\right)$
$m \vec{v}_{3}=-m\left(\vec{v}_{1}+\vec{v}_{2}\right)$
$\therefore \overrightarrow{\mathrm{v}}_{3}=-[(3 \hat{\mathrm{i}}+2 \hat{\mathrm{j}})+(-\hat{\mathrm{i}}-4 \hat{\mathrm{j}})]$
$\vec{v}_{3}=-2 \hat{i}+2 \hat{j}$
Q. 31 (1)
$\overrightarrow{\mathrm{F}}_{\text {net }}=0$
then $\overrightarrow{\mathrm{p}}=$ conserved

$$
\begin{aligned}
& \mathrm{p}_{\mathrm{i}}=\mathrm{p}_{\mathrm{f}} \\
& \mathrm{~m}_{1} \mathrm{v}=\mathrm{m}_{2}(0)+\left(\mathrm{m}_{1}-\mathrm{m}_{2}\right) \mathrm{v}_{1} \\
& \mathrm{v}_{1}=\frac{\mathrm{m}_{1} \mathrm{v}}{\left(\mathrm{~m}_{1}-\mathrm{m}_{2}\right)}
\end{aligned}
$$

Q. 32 (1)

As $f_{\text {net }}=0$ from momentum conservation
$(A-4) v_{1}=4 v \Rightarrow v_{1}=\frac{4 v}{(A-4)}$
Q. 33 (A) [2] (B) [3]
(1) It could be non-zero, but it must be constant.
(2) It could be non-zero and it might not be constant.
Q. 34 (2)

Total travelled distance $=2 \mathrm{~d}$

then
Time between two collisions $=\frac{2 \mathrm{~d}}{\mathrm{v}_{0}}$
So no. of collision/sec $=\frac{\mathrm{v}_{0}}{2 \mathrm{~d}}$
Impulse in one collision $=\mathrm{mv}_{0}-\left(-\mathrm{mv}_{0}\right)=2 \mathrm{mv}_{0}$
$\mathrm{F}=2 \mathrm{mv}_{0} \times \frac{\mathrm{v}_{0}}{2 \mathrm{~d}}=\frac{\mathrm{mv}_{0}^{2}}{\mathrm{~d}}$
Q. 35 (2)
$\mathrm{v}_{1}=\sqrt{2 \mathrm{gh}}=\sqrt{2 \times 10 \times 10}=10 \sqrt{2}$
$\mathrm{k}_{2}=\frac{1}{4} \mathrm{k}_{1} \Rightarrow \mathrm{v}_{2}{ }^{2}=\frac{1}{4} \mathrm{v}_{1}{ }^{2}$
$\therefore \mathrm{v}_{2}=\frac{\mathrm{v}_{1}}{2}=5 \sqrt{2}$
$|\Delta \mathrm{P}|=\left|-\mathrm{mv}_{2}-\left(\mathrm{mv}_{1}\right)\right|=\mathrm{m}\left|-\mathrm{v}_{2}-\mathrm{v}_{1}\right|$
$|\Delta \mathrm{P}|=50 \times 10^{-3} \times \frac{3}{2} \times 10 \sqrt{2}=\frac{15 \times 10^{-1}}{\sqrt{2}}$
$\mathrm{J}=\Delta \mathrm{P}=1.05 \mathrm{~N}-\mathrm{s}$.
Q. 36 (2)

Impulse = change in momentum
$-\mathrm{I}=-\mathrm{m} 2 \mathrm{u}-\mathrm{mu}$
$\mathrm{I}=3 \mathrm{mu}$
W.D. = change in K.E.

W.D. $=\frac{1}{2} m(2 u)^{2}-\frac{1}{2} m u^{2}$
$=\frac{3}{2} \mathrm{mu}^{2} \Rightarrow$ W.D. $=\frac{\mathrm{Iu}}{2}$
Q. 37 (3)

Impulse $=$ change in momentum
$\int F . d t=\Delta P$
Given \int F.dt $=\mathrm{J}$
Now, Contact time is twice than the earlier.
$\int \overrightarrow{\mathrm{F}} \cdot 2 \mathrm{dt}=\mathrm{J}^{\prime} \Rightarrow \mathrm{J}^{\prime}=2 \mathrm{~J}$
Q. 38 (2)
$m v_{i}+m v j+2 m v_{3}=0$
$\vec{v}_{3}=-\frac{(v i+v \hat{j})}{2}=-\frac{v}{2}(i+\hat{j})=-\frac{v}{\sqrt{2}}$.
$\mathrm{k}_{\mathrm{f}}=\frac{1}{2} \mathrm{mv}^{2}+\frac{1}{2} \mathrm{mv}^{2}+\frac{1}{2} 2 \mathrm{~m} \frac{\mathrm{v}^{2}}{2}$.
$\mathrm{k}_{\mathrm{f}}=\frac{3 \mathrm{mv}^{2}}{2}$.
Q. 39 (3)

From momentum conservation $\mathrm{mu}=2 \mathrm{mv}$
$\Rightarrow \mathrm{v}=\frac{\mathrm{u}}{2}$
from energy conservation
$\frac{1}{2} \times 2 \mathrm{~m} \times\left(\frac{\mathrm{u}}{2}\right)^{2}=2 \mathrm{mgh}$
$\Rightarrow \mathrm{h}=\frac{\mathrm{u}^{2}}{8 \mathrm{~g}}$
Q. 40 (4)

Impulse $=$ change in momentum
So, $-\mathrm{T} \Delta \mathrm{t}=2 \mathrm{mv}-\mathrm{mu}$ (for bullet)
$\mathrm{I}=\mathrm{T} \Delta \mathrm{t}=3 \mathrm{mv}$ (for mass 3 m)
$3 \mathrm{mv}=2 \mathrm{mv}-\mathrm{mu}$
$v=u / 5 \Rightarrow I=\frac{3 m u}{5}$
Q. 41 (2)

If e $=1$ then angle $=45^{\circ}$
If $0<\mathrm{e}<1$ then angle is less than 45° with the horizontal. So 30° is not possible.
Q. 42 (1)

In inelastic collision, due to collision some fraction of mechanical energy is retained in form of deformation potential energy.
\therefore thus K.E. of particle is not conserved.
In absence of external forces momentum is conserved.
Q. 43 (4)

$$
\begin{aligned}
& 0.5 \times \mathrm{v}_{\mathrm{p}}+\mathrm{m} \times 0=5.05 \mathrm{v} \\
& \therefore \frac{\mathrm{v}_{\mathrm{f}}}{\mathrm{v}_{\mathrm{i}}}=\frac{0.05}{5}=10^{-2} \\
& \Rightarrow \frac{\frac{1}{2} \mathrm{~m}\left(\mathrm{v}_{\mathrm{f}}\right)^{2}}{\frac{1}{2} \mathrm{~m}\left(\mathrm{v}_{\mathrm{i}}\right)^{2}}=\left(10^{-2}\right)^{2}=10^{-4} .
\end{aligned}
$$

Q. 44 (1)

$$
\mathrm{m}_{1} \sqrt{2 \mathrm{gh}}+0=\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right) \mathrm{v}
$$

$\mathrm{v}=\frac{\mathrm{m}_{1} \sqrt{2 \mathrm{gh}}}{\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right)}$
$\therefore \mathrm{v}^{2}-\mathrm{u}^{2}+2 \mathrm{~g} \times \frac{\mathrm{h}}{9}=6+2 \mathrm{~g} \times \frac{\mathrm{h}}{4}=\frac{\mathrm{gh}}{2}$
$\therefore \mathrm{v}=\sqrt{\frac{\mathrm{gh}}{2}}$
Also, $\sqrt{\frac{\mathrm{gh}}{2}}=\frac{\mathrm{m} \sqrt{2 \mathrm{gh}}}{\mathrm{m}_{1}+\mathrm{m}_{2}} \Rightarrow 2 \mathrm{~m}_{1}+\mathrm{m}_{1}+\mathrm{m}_{2}$;
$\therefore \frac{\mathrm{m}_{1}}{\mathrm{~m}_{2}}=1$.
Q. 45 (2)
by conservation of linear momentum

$$
\begin{aligned}
& P_{i}=P_{f} \\
\Rightarrow & m v=(100 \mathrm{~m}) \mathrm{u} \\
\Rightarrow & \mathrm{u}=\mathrm{v} / 100 \\
& \mathrm{P}_{\mathrm{i}}=\mathrm{P}_{\mathrm{f}} \\
\Rightarrow & \mathrm{mv}=(100 \mathrm{~m}) \mathrm{u} \quad \Rightarrow \mathrm{u}=\mathrm{v} / 100
\end{aligned}
$$

Q. 46 (3)
$\because \mathrm{e}=1$
As collision is elastic therefore $v_{i}=v_{f}$

So $\Delta \mathrm{K}=0 \Rightarrow \mathrm{k}_{\mathrm{f}}=\mathrm{k}_{\mathrm{i}}=\frac{1}{2} \mathrm{~m}\left(\mathrm{u}_{1}^{2}+\mathrm{u}_{2}^{2}\right)$
Q. 47 (3)

In absence of external force. Momentum of the system is conserved.
Q. 48 (3)

If $\mathrm{e}=1$ and $\mathrm{m}_{1}=\mathrm{m}_{2}$ then after collision velocity interchange
Q. 49 (2)
from energy conservation

$$
\mathrm{mql}=\frac{1}{2} \mathrm{mv}^{2} \Rightarrow \mathrm{v}=\sqrt{2 \mathrm{gl}}
$$

from momentum conservation
$\mathrm{m} \sqrt{2 \mathrm{gl}}=\mathrm{mv}^{\prime} \Rightarrow \mathrm{v}^{\prime}=\sqrt{2 \mathrm{gl}}$
$\mathrm{KE}=\frac{1}{2} \mathrm{~m} \times 2 \mathrm{gl}=\mathrm{mgl}$
Q. $50 \quad$ (2)

$21 \times 1-4 \times 2=1+2 \mathrm{v}_{2}$
$21-8=1+2 \mathrm{v}_{2}$
$2 \mathrm{v}_{2}=12 \Rightarrow \mathrm{v}_{2}=6 \mathrm{~m} / \mathrm{sec}$
$\mathrm{e}=\frac{\mathrm{v}_{2}-\mathrm{v}_{1}}{\mathrm{u}_{1}-\mathrm{u}_{2}}=\frac{6-1}{21+4}=\frac{5}{25}=\frac{1}{5}$
$e=0.2$
Q. 51 (3)
$\mathrm{M}_{\mathrm{A}}=\rho \times \frac{4}{3} \pi r^{3} \quad e=\frac{1}{2}$
$M_{B}=\rho \times \frac{4}{3} \pi(2 r)^{3}=8 M_{A}$
$\mathrm{m}_{\mathrm{A}} \mathrm{v}+0=\mathrm{m}_{\mathrm{A}} \mathrm{v}_{1}+\mathrm{m}_{\mathrm{B}} \mathrm{v}_{2}$
$e v=v_{2}-v_{1}$
Adding (i) + (ii) $=9 \mathrm{v}_{2}=\mathrm{v}+\frac{\mathrm{v}}{2}=\frac{3 \mathrm{v}}{2}$
$\therefore \mathrm{v}_{1}=\mathrm{v}_{2}-\frac{\mathrm{v}}{2}=\frac{\mathrm{v}}{6}-\frac{\mathrm{v}}{2}=-\frac{\mathrm{v}}{3}$.
$\therefore \frac{\mathrm{v}_{1}}{\mathrm{v}_{2}}=\frac{\mathrm{v} / 3}{\mathrm{v} / 6}=2$.

$\mathrm{V}_{2}=\mathrm{Z}_{0}$
Vel. of Sep $=$ Vel of approach (\therefore elastic)
$\therefore 20+5=V-5$
$\Rightarrow \mathrm{V}=30 \mathrm{~m} / \mathrm{s}$ Ans.
$\mathrm{v}_{\mathrm{b}}=-\left(\mathrm{v}_{0}+2 \mathrm{v}\right) \quad \therefore \mathrm{m}_{1} \gg \mathrm{~m}_{2}$
$\mathrm{v}_{\mathrm{b}}=-(20+10)=-30 \mathrm{~m} / \mathrm{sec}$.
Q. 53 (2)
Q. 54 (1)
$\mathrm{mu}=\mathrm{mv}_{1}+\mathrm{mv}_{2}$
$\frac{v_{2}-v_{1}}{u}=e$
as solving have

$$
\begin{equation*}
\frac{\mathrm{v}_{1}}{\mathrm{v}_{2}}=\left(\frac{1-\mathrm{e}}{1+\mathrm{e}}\right) \tag{ii}
\end{equation*}
$$

Q. 55 (1)

Let v_{1} is the velocity of wall after collision.
$e=\frac{\mathrm{V}_{1}-20}{20-(-25)}(e=1)$

$\mathrm{v}_{1}=65 \mathrm{~m} / \mathrm{s}$

Q. 56 (1)

$2^{\text {nd }}$ Collision
Velocity of $\mathrm{B} v=\frac{\mathrm{mv}+4 \mathrm{~m}(0-\mathrm{v})}{5 \mathrm{~m}}=\frac{3 \mathrm{~m}}{5}$

After collision of A and B.

Q. 57 (2)

Let mass of ball 2 is m and mass of ball 1 is 2 m .
$\mathrm{v}_{1}=\frac{\mathrm{m}_{1} \mathrm{u}_{1}+\mathrm{m}_{2} \mathrm{u}_{2}+\mathrm{m}_{2} \mathrm{e}\left(\mathrm{u}_{2}-\mathrm{u}_{1}\right)}{\mathrm{m}_{1}+\mathrm{m}_{2}}$
$\xrightarrow[\underbrace{2 \mathrm{~m}}_{1}]{\mathrm{v}}$
(m) $\frac{\mathrm{v}}{3}=\frac{2 \mathrm{mv}+\mathrm{em}(0-\mathrm{v})}{3 \mathrm{~m}} \Rightarrow \mathrm{e}=1$

So elastic collision.
Q. 58 (3)

Just before collision, speed of ball $\mathrm{v}=\sqrt{2 \mathrm{gh}}$ and just after collision $\mathrm{v}^{\prime}=\frac{80}{100} \sqrt{2 \mathrm{gh}}=\frac{4}{5} \sqrt{2 \mathrm{gh}}$

$\mathrm{v}^{2}-\mathrm{u}^{2}=2 \mathrm{aS}$
Let h ' is the maximum height after collision.
$0-\left(\frac{4}{5} \sqrt{2 \mathrm{gh}}\right)^{2}=2 \mathrm{x}(-\mathrm{g}) \times \mathrm{h}^{\prime}$
$\frac{16}{25} \times 2 \mathrm{gh}=2 \mathrm{gh}$
$h^{\prime}=\frac{16}{25} h$
Q. 59 (1)

From energy conservation
$\frac{1}{2} \mathrm{~m}(\sqrt{2 \mathrm{~g}})^{2}+\mathrm{mgh}=\frac{1}{2} \mathrm{mv}^{2}$
$\mathrm{v}=2 \sqrt{\mathrm{gh}}$
$e=\frac{\sqrt{2 \mathrm{gh}}}{2 \sqrt{\mathrm{gh}}}$

$$
\therefore \mathrm{e}=\frac{1}{\sqrt{2}}, \quad \left\lvert\, \begin{gathered}
\uparrow \mathrm{v}=\sqrt{2 \mathrm{gh}} \\
\text {, } \\
\hline 7777
\end{gathered}\right.
$$

Q. 60
(3)

$\sqrt{2 \times 10 \times 5}=10 \mathrm{~m} / \mathrm{sec}$.
$\therefore \frac{10}{10}+\frac{2 \times \mathrm{e} \times 10}{10}+\frac{2 \times \mathrm{e}^{2} \times 10}{10}+\ldots$.
$1+2\left[\mathrm{e}+\mathrm{e}^{2}+\ldots.\right]$
$1+\frac{2 \mathrm{e}}{1-\mathrm{e}}=3 \mathrm{sec}$.
Q. 61 (1)
$\mathrm{v}=A \mathrm{v}_{1}+\mathrm{v}_{2}$
$1=\frac{\mathrm{v}_{1}-\mathrm{v}_{2}}{\mathrm{v}} \Rightarrow \mathrm{v}=\mathrm{v}_{1}=\mathrm{v}_{2}$
$\mathrm{v}_{1}=\frac{2 \mathrm{v}}{\mathrm{A}+1}$
$v_{2}=v\left(\frac{1-A}{1+A}\right)$
Q. 62 (3)
$5 \times 10=\frac{5}{2}(0)+\frac{5}{2}\left(\mathrm{v}_{1}\right) \Rightarrow \mathrm{v}_{1}=20 \mathrm{~m} / \mathrm{sec}$
$\mathrm{KE}=\frac{1}{2} \times \frac{5}{2}(20)^{2}-\frac{1}{2} \times 5(10)^{2}$
$=500-250=250 \mathrm{~J}$.
Q. 63 (2)
$\mathrm{E}_{\mathrm{i}}=\frac{1}{2} \mathrm{mu}_{1}^{2}+\frac{1}{2} \mathrm{mu}_{2}^{2}$
$\mathrm{m}\left(\mathrm{u}_{1}-\mathrm{u}_{2}\right)=2 \mathrm{mu} \Rightarrow \mathrm{u}=\frac{\mathrm{u}_{1}-\mathrm{u}_{2}}{2}$
Energy loss $=\frac{1}{2} \times \frac{2 m}{4}\left(u_{1}-u_{2}\right)^{2}-\frac{1}{2} m\left(u_{1}^{2}+u_{2}^{2}\right)$
Q. 64 (4)
$\mathrm{mu}=\mathrm{nmu}_{1}+1 \mathrm{mu}_{2}$
$1=\frac{\mathrm{u}_{1}-\mathrm{u}_{2}}{\mathrm{u}}$
$\mathrm{u}=\mathrm{n}\left(\mathrm{u}+\mathrm{u}_{2}\right)+\mathrm{u}_{2}$
$\mathrm{u}=\mathrm{nu}+\mathrm{nu}_{2}+\mathrm{u}_{2}$
$\mathrm{u}=\mathrm{nu}_{1}+\mathrm{u}_{1}-\mathrm{u}$
$2 \mathrm{u}=(\mathrm{n}+1) \mathrm{u}_{1}$
$\frac{\frac{1}{2} \mathrm{nmu}_{1}^{2}}{\frac{1}{2} \mathrm{mu}^{2}}=\frac{\mathrm{n} \frac{4 \mathrm{u}^{2}}{(\mathrm{n}+1)^{2}}}{\mathrm{u}^{2}}=\frac{4 \mathrm{n}}{(\mathrm{n}+1)^{2}}$
Q. 65 (4)
$\Delta \mathrm{p}=0.1(6+4)$
$=0.1 \times 10=1 \mathrm{NS}$

Q. 66 (1)

$\mathrm{mgh}=\frac{1}{2} \mathrm{mv}^{2}$

$\mathrm{v}=\sqrt{2 \mathrm{gh}}$
By momentum conservation
$\mathrm{m} \sqrt{2 \mathrm{gh}}+0=2 \mathrm{mv}^{\prime}$
$\mathrm{v}^{\prime}=\frac{\sqrt{2 \mathrm{gh}}}{2}$
By energy conservation
$\frac{1}{2}(2 \mathrm{~m}) \mathrm{v}^{\prime 2}=2 \mathrm{mgh}^{\prime}, \mathrm{m} \frac{(2 \mathrm{gh})}{4}=2 \mathrm{mgh}^{\prime}$
$h^{\prime}=\frac{h}{4}$
Q. 67 (4)

(i) $\because v$ is $+v e$ for both.
(ii) Yes (when maximum compression)
(iii) $\because S$ have greater velocity after collision then R have before collision and K.E. of S will be less then initial K.E. of R

$$
\begin{aligned}
& \frac{1}{2} \mathrm{~m}_{\mathrm{s}} \mathrm{~V}_{\mathrm{s}}{ }^{2}<\frac{1}{2} \mathrm{~m}_{\mathrm{R}}\left(\mathrm{~V}_{\mathrm{R}}\right)^{2} \\
& \text { but } \mathrm{V}_{\mathrm{S}}>\mathrm{V}_{\mathrm{R}} \text { So } \mathrm{m}_{\mathrm{s}}<\mathrm{m}_{\mathrm{R}}
\end{aligned}
$$

JEE-ADVANCED
 OBJECTIVE QUESTIONS

Q. 1 (B)

COM can lie anywhere within the radius r.
Q. 2 (C)

COM of circle is at O. Let M_{1} is mass of circle and M_{2} is mass of triangle

Distance of COM from centre of circle
$r_{1}=\frac{M_{2} \ell}{M_{1}+M_{2}}=\frac{-\sigma a^{2}}{\sigma \pi a^{2}-\sigma a^{2}} \times \frac{a}{3}$
$=\frac{\mathrm{a}^{2} \times \mathrm{a}}{3 \mathrm{a}^{2}(\pi-1)}=\frac{\mathrm{a}}{3(\pi-1)}$
Q. 3

COM of semic circular disc $=\frac{4 \mathrm{R}}{3 \pi}$
So from point C distance of COM is 8 cm .
Center of mass coincides
Q. 4 (D)

and equation of line is $\frac{x}{L}+\frac{y}{L}=1$
Q. 5 (D)

Acceleration of COM does not depend on position of force.
Q. 6 (B)

Since no external force acting on system hence V_{CM} remain constant.
Q. 7 (D)

An external force of $3 m \omega^{2} R$ is required which can act anywhere on system.

Q. 8 (C)

Centre of mass of uniform semi-circular disc is at $\frac{4 R}{3 \pi}$
Centre of mass of uniform semi-circular ring is at $\frac{2 R}{\pi}$
Centre of mass of solid hemi-sphere is at $\frac{3 R}{8}$
Centre of mass of hemi-sphere shell is at $\frac{R}{2}$

C	T	H	R	S	D
h	h	R	2 R	3 R	4 R
4	3	2	π	8	3π

Q. 9 (C)

Since there is no ext. force on system

$$
\begin{aligned}
& \mathrm{m}(\mathrm{R}-\mathrm{x})+\mathrm{m}(-\mathrm{x})=0 \\
& \mathrm{x}=\mathrm{R} / 2 .
\end{aligned}
$$

Alternate : Let the tube displaced by x towards left, then ;
$m \mathrm{x}=\mathrm{m}(\mathrm{R}-\mathrm{x}) \Rightarrow \mathrm{x}=\frac{\mathrm{R}}{2}$
Q. 10 (C)

Taking the origin at the centre of the plank.

(Assuming the centres of the two men are exactly at the axis shown.)
$60(0)+40(60)+40(-\mathrm{x})=0, \mathrm{x}$ is the displacement of the block.

$$
\Rightarrow \quad x=60 \mathrm{~cm}
$$

i.e. A \& B meet at the right end of the plank.

Q. 11 (B)

Since all the surfaces are smooth, no external force is acting on the system in horizontal direction. Therefore, the centre of mass of the system in horizontal direction remains stationary.

Final
x-coordinate of COM initially will be given be given by-
$x_{i}=\frac{m_{1} x_{1}+m_{2} x_{2}}{m_{1}+m_{2}}=\frac{(4 M)(L)+M(L+5 R)}{4 M+M}=(L+R) . \ldots$

Let $(x, 0)$ be the coordinates of the centre of large sphere in final position. Then x-coordinate of COM finally will be
$x_{f}=\frac{(4 M)(x)+M(x-5 R)}{4 M+M}=(x-R)$
Equating (1) and (2), we have

$$
\mathrm{x}=\mathrm{L}+2 \mathrm{R}
$$

Therefore, coordinates of large sphere, when the smaller sphere reaches the other extreme position, are (L+2R, 0) Ans

Q. 12 (A)

$y_{C M}=0$
$y_{C M}=\frac{m}{4} y_{1}+\frac{3 m}{4} y_{2} \quad y_{1}=+15$
$\therefore \quad y_{2}=-5 \mathrm{~cm}$
Q. 13 (B)
when ball reaches pt A .
then block get shifted by x
\therefore but since than there is no ext
force therefore com remain at its position

$[(\mathrm{R}-\mathrm{r})-\mathrm{x}] \mathrm{m}=\mathrm{Mx}$
$\therefore \mathrm{x}=\frac{\mathrm{m}(\mathrm{R}-\mathrm{r})}{\mathrm{M}+\mathrm{m}}$
Q. 14 (C)

Using momentum conservation
$\mathrm{MV}=\mathrm{mv} \quad \mathrm{V}=\frac{\mathrm{mv}}{\mathrm{M}}$
using energy conducts equation
$\operatorname{mg}(\mathrm{R}-\mathrm{r})=\frac{1}{2} \mathrm{mv}^{2}+\frac{1}{2} \mathrm{Mv}^{2}$
on solving we get $\mathrm{v}=\mathrm{m} \sqrt{\frac{2 \mathrm{~g}(\mathrm{R}-\mathrm{r})}{\mathrm{M}(\mathrm{m}-\mathrm{m})}}$.
Q. 15 (A)
$\mathrm{a}_{\mathrm{com}}=\frac{\overrightarrow{\mathrm{F}}_{\mathrm{ext}}}{\mathrm{M}}=\frac{\overrightarrow{\mathrm{Mg}}+\overrightarrow{\mathrm{R}}}{\mathrm{M}}$ (Rem. $\overrightarrow{\mathrm{R}}$ is vector)
Q. 16 (C)

$\mathrm{P}_{\mathrm{i}}=0$
$\mathrm{P}_{\mathrm{f}}=\mathrm{MV}-\mathrm{mV}_{1}$
$M V-m V_{1}=0 \Rightarrow u=\frac{M}{m} V$.
using $V_{1}{ }^{2}=u^{2}+2 a x$.
$\mathrm{a}=\mu \mathrm{g}$.
$\left(\frac{\mathrm{MV}}{\mathrm{m}}\right)^{2}=0+2 \mu \mathrm{gx}$.
$\therefore \quad \mathrm{x}=\frac{\mathrm{M}^{2} \mathrm{~V}^{2}}{2 \mathrm{~m}^{2} \mu \mathrm{~g}}$
Q. 17 (C)
use $\mathrm{m}_{1} \mathrm{v}_{1}=\mathrm{m}_{2} \mathrm{v}_{2}=\mathrm{P}$
F.E. $=\frac{1}{2}{m v_{1}}^{2}+\frac{1}{2} m_{2} v_{2}{ }^{2}$
$=\frac{1}{2} \mathrm{~m}_{1}\left(\frac{\mathrm{P}}{\mathrm{m}_{1}}\right)^{2}+\frac{1}{2} \mathrm{~m}_{2}\left(\frac{\mathrm{P}}{\mathrm{m}_{2}}\right)^{2}$
$=\frac{1}{2} \frac{\mathrm{P}^{2}\left(\mathrm{~m}_{2}+\mathrm{m}_{1}\right)}{\mathrm{m}_{1} \mathrm{~m}_{2}}$.

Q. 18 (B)

If we treat the train as a ring of mass ' M ' then its COM will be at a distance $\frac{2 R}{\pi}$ from the centre of the circle. Velocity of centre of mass is :

$$
\mathrm{V}_{\mathrm{CM}}=\mathrm{R}_{\mathrm{CM}} \cdot \omega
$$

$=\frac{2 \mathrm{R}}{\pi} \cdot \omega=\frac{2 \mathrm{R}}{\pi} \cdot\left(\frac{\mathrm{V}}{\mathrm{R}}\right)\left(\because \omega=\frac{\mathrm{V}}{\mathrm{R}}\right)$
$\Rightarrow \quad \mathrm{V}_{\mathrm{CM}}=\frac{2 \mathrm{~V}}{\pi} \Rightarrow \mathrm{MV}_{\mathrm{CM}}=\frac{2 \mathrm{MV}}{\pi}$
As the linear momentum of any system $=\mathrm{MV}_{\mathrm{CM}}$
$\therefore \quad$ The linear momentum of the train $=\frac{2 \mathrm{MV}}{\pi}$ Ans.
Q. 19 (A)

Using momentum conservation
$\overrightarrow{\mathrm{p}}_{1}+\overrightarrow{\mathrm{p}}_{2}+\overrightarrow{\mathrm{p}}_{3}+\overrightarrow{\mathrm{p}}_{4}=0$
$\overrightarrow{\mathrm{p}}_{1}=-\overrightarrow{\mathrm{p}}_{2}-\overrightarrow{\mathrm{p}}_{3}-\overrightarrow{\mathrm{p}}_{4}$
$\left|\overrightarrow{\mathrm{p}}_{1}\right|=\sqrt{\mathrm{p}_{2}^{2}+\mathrm{p}_{3}^{2}+\mathrm{p}_{4}^{2}}$
K. $E_{1}=\frac{p_{1}^{2}}{2 m}=\frac{p_{2}^{2}+p_{3}^{2}+p_{4}^{2}}{2 m}=E_{0}+E_{0}+E_{0}$

Total energy $=3 \mathrm{E}_{0}+\mathrm{E}_{0}+\mathrm{E}_{0}+\mathrm{E}_{0}=6 \mathrm{E}_{0}$
$\mathrm{F}=\frac{100 \times 10^{-3}(\sqrt{2 \times 9.8 \times 0.625}+\sqrt{2 \times 9.8 \times 2.5})}{0.01}$
$\mathrm{~F}=105 \mathrm{~N}$
Q. 21 (B)
(i) FromM.C. $\mathrm{mv}=2 \mathrm{mv}^{\prime}$
$\mathrm{v}^{\prime}=\mathrm{v} / 2$
(ii) from M.C. $\mathrm{mv}=2 \mathrm{mv}^{\prime}$ $\mathrm{v}^{\prime}=\mathrm{v} / 2$
(iii) Impulse $=\mathrm{mv}=3 \mathrm{mv}^{\prime}$

$$
\mathrm{v}^{\prime}=\frac{\mathrm{v}}{3}
$$

Q. 22 (B)
$\Delta \mathrm{P}=2 \mathrm{mv} \cos \theta$
$\mathrm{F}_{\text {avg }}$ unit volume
$=(2 \mathrm{mv} \cos \theta)(\mathrm{nv})$
$=2 \mathrm{mnv}^{2} \cos \theta$

Pressure $=\frac{\mathrm{F}_{\perp}}{\text { area }}=2 \mathrm{mnv}^{2} \cos \theta \cos \theta$
Q. 23 (B)

In centre of mass frame total momentum of the system is always zero.
Hence momentum of other particle is $-\overrightarrow{\mathrm{p}}$.
Q. 24 (B)
$2 \mathrm{~F} \leftrightarrows \underset{2 \mathrm{M}}{\stackrel{-\infty}{ } \rightarrow \mathrm{M}} \longrightarrow$
$\mathrm{a}_{\text {Сом }}=\frac{\mathrm{F}}{3 \mathrm{M}}$
w.r. to COM

$\frac{4 F}{3} x_{1}+\frac{4 F}{3} x_{2}=\frac{1}{2} k\left(x_{1}+x_{2}\right)^{2}$
$\frac{8 \mathrm{~F}}{3 \mathrm{~K}}=\left(\mathrm{x}_{1}+\mathrm{x}_{2}\right)$

Q. 20 (A)

$\mathrm{I}=\mathrm{f} \times \Delta \mathrm{t}$ and $\mathrm{F}=\frac{\mathrm{m}\left(\sqrt{2 \mathrm{~g}} \mathrm{~h}_{2}+\sqrt{2} \mathrm{gh}_{1}\right)}{\Delta \mathrm{t}}$
Q. 25 (C)

Velocity of the ball on striking $=\sqrt{2 \mathrm{gh}}$
After that ball goes to height less than (h) due to inelastic collission $=\sqrt{2 \mathrm{~g}}(\mathrm{~h}-\mathrm{d})$.
$\therefore \sqrt{2 \mathrm{~g}(\mathrm{~h}-\mathrm{d})}=\mathrm{e} \sqrt{2 \mathrm{gh}}$
$h-d=e^{2} h \Rightarrow \frac{h}{d}=\frac{1}{1-e^{2}}$.

Q. 26 (A)

$\mathrm{e}=\frac{\mathrm{v} \sin \theta}{\sqrt{2 \mathrm{gh}} \cos \theta}$
apply conservation of momentum

$\mathrm{m} \sqrt{2 \mathrm{gh}}=\mathrm{mv} \cos \theta$
e $\sqrt{2 \mathrm{gh}} \cos \theta \times \mathrm{m}=\mathrm{mv} \cos \theta$
$\frac{\tan \theta}{\mathrm{e}}=\cot \theta$.
$\therefore \mathrm{e}=\tan ^{2} \theta$ on solving

Q. 27 (A)

Here $\mathrm{e}=1$
if ball rebound elastically
$\mathrm{v}_{\text {LOI }}=\mathrm{u}_{\text {LOI }}$
\therefore Along line of impact momentum conservation
$\int \mathrm{Ndt}=\mathrm{mv}-(-\mathrm{mu})=\mathrm{mv}+\mathrm{mu}=2 \mathrm{mu}$
Alog LO I
$u_{\text {LOL }}=u \cos \theta$
$=\sqrt{2 \mathrm{gh}} \cos \theta$
$\mathrm{J}=2 \mathrm{~m} \cos \theta . \sqrt{2 \mathrm{gh}}$.
Q. 28 (A)

$\mathrm{v}_{1}=\mathrm{v}$
and $\quad v_{2}=e v$ and $t=\frac{d}{v_{\text {avg }}}$
$<v_{\text {avg }}>=\frac{e}{t}$
$\frac{2}{3} v=\frac{2 \ell}{\frac{\ell}{v}+\frac{\ell}{e v}} \frac{1}{3}=\frac{e}{e+1}$.
get $\quad e=0.5$
Q. 29 (C)
$\mathrm{m}_{2} \mathrm{v} \cos \theta=3 \mathrm{v}_{\mathrm{y}}$

$\frac{v_{y}}{v \cos \theta}=\frac{2}{3}$

Also $\mathrm{e}=\frac{\mathrm{v}_{\mathrm{y}}}{\mathrm{v} \cos \theta}=\frac{2}{3}$.
Q. 30 (B)

$\mathrm{mV}_{\mathrm{f}} \cos 30^{\circ}=1.5 \mathrm{~m}$
$\mathrm{V}_{\mathrm{f}} \cos 30^{\circ}=1.5$
$\mathrm{v}_{\mathrm{f}}=\sqrt{3} \mathrm{~m} / \mathrm{s}$
Q. 31 (D)
$m g h=\mathrm{KE}_{\mathrm{A}}+\mathrm{KE}_{\mathrm{B}}$
$0.25 \times 0.45 \times 10=1+\frac{1}{2}(0.25) \mathrm{v}^{2}$
$\mathrm{v}=1 \mathrm{~m} / \mathrm{s}$
Ball B is heavy so ball A velocity is towards left
Q. 32 (C)
$\int 2 \mathrm{~N} \sin \theta \cdot \mathrm{dt}=\mathrm{Mv}_{0}$
$\int \mathrm{N} \cos \theta \cdot \mathrm{dt}=\mathrm{Mu} \mathrm{A}^{\prime}$

$\int \mathrm{N} . \mathrm{dt}=\frac{\mathrm{mv}_{0}}{2 \sqrt{5}} \cdot 3$
$\sin \theta=\frac{\sqrt{(3 / 2) \mathrm{R}^{2}-\mathrm{R}^{2}}}{3 / 2 \mathrm{R}}$
$\sin \theta=\frac{\sqrt{5}}{3} ; \cos \theta=\frac{2}{3}$
$\frac{\mathrm{mv}_{0} 3}{2 \sqrt{5}} \frac{2}{3}=\mathrm{mv}^{\prime} \Rightarrow \mathrm{v}^{\prime}=\frac{\mathrm{v}_{0}}{\sqrt{5}}$
Q. 33 (C)

Impulse $=$ change in momentum
$\int 2 \mathrm{~N} \sin \theta \mathrm{dt}=\frac{\mathrm{mv}_{0}}{2}$
$\int \mathrm{N} \cdot \cos \theta \mathrm{dt}=\mathrm{mv}^{\prime}$
from (i) and (ii)
$\int 2 \mathrm{~N} \times \frac{\sqrt{5}}{3} \mathrm{dt}=\frac{\mathrm{mv}_{0}}{2}$
$\int \frac{2 \mathrm{~N}}{3} \mathrm{dt}=\mathrm{mv}^{\prime}$
On dividing
$\frac{2 \mathrm{~N} \times \sqrt{5}}{3} \times \frac{3}{2 \mathrm{~N}}=\frac{\mathrm{v}_{0}}{2 \mathrm{v}^{\prime}}$
$\mathrm{v}^{\prime}=\frac{\mathrm{v}_{0}}{2 \sqrt{5}}$
Q. 34 (D)
time to reach $\frac{\mathrm{h}}{2}$ from top by A
$\mathrm{t}=\sqrt{\frac{\mathrm{h}}{\mathrm{g}}}$
for body B
$\frac{h}{2}=v \sqrt{\frac{h}{g}}-\frac{1}{2} g\left(\sqrt{\frac{h}{g}}\right)^{2}$

$h=v \sqrt{\frac{h}{g}}, v=\sqrt{\mathrm{hg}}$
velocity of body B at $\frac{h}{2}$
$v_{f}=\sqrt{h g}-g \sqrt{\frac{h}{g}}$
$v_{f}=0$
Now
momentum conservation
$\mathrm{mg} . \mathrm{t}=3 \mathrm{mv}^{\prime}$ $\mathrm{gt} / 3=\mathrm{v}^{\prime}$
Energy conservation
$\Rightarrow \frac{1}{2} 3 \mathrm{~m}(\mathrm{gt} / 3)^{2}+3 \mathrm{mg} \frac{\mathrm{h}}{2}=\frac{1}{2} 3 \mathrm{~m} \cdot \mathrm{v}_{1}{ }^{2}$
$\mathrm{v}_{1}=\frac{\sqrt{10 \mathrm{gh}}}{3}$
Q. 35 (A)

In x direction : Applying conservation of momentum $\mathrm{mu}=2 \mathrm{mv} \cos 30$
$\mathrm{v}=\frac{\mathrm{u}}{2 \cos 30^{\circ}}=\frac{\mathrm{u}}{\sqrt{3}}$.

Also $\mathrm{e}=\frac{\mathrm{v}}{\mathrm{u} \cos 30^{\circ}}=\frac{\mathrm{u}}{\sqrt{3} \mathrm{u}} \times \frac{2}{\sqrt{3}}$.
$\therefore \mathrm{e}=\frac{2}{3}$.
Q. 36 (C)
$\sin \theta=\frac{\mathrm{R} / 2}{\mathrm{R}} ; \theta=30^{\circ}$

Both have equal mass it means along LOI particle transfer it velocity to disc which is $v \cos \theta$.
so $\quad \mathrm{V}_{\mathrm{D}}=\mathrm{V} \cos \theta=\mathrm{V} \cos 30^{\circ}=\frac{\sqrt{3 \mathrm{~V}}}{2}$
Q. 37 (C)
Q. 38 (D)

Infinite
Q. 39 (B)
$\frac{2 v \cos \theta}{g}$

Q. 40 (C)

$\overrightarrow{\mathrm{v}_{\mathrm{r}}}=\overrightarrow{\mathrm{v}_{\mathrm{mc}}}$
$\mathrm{v}_{\mathrm{r}}=\overrightarrow{\mathrm{v}_{\mathrm{m}}}-\overrightarrow{\mathrm{v}_{\mathrm{c}}}=\mathrm{v}-\mathrm{u}=0$.
$\therefore \quad$ since $\quad \mathrm{v}_{\mathrm{r}}=0$ so $\mathrm{F}_{\mathrm{t}}=\frac{\mathrm{vrdm}}{\mathrm{dt}}=0$.

$$
\begin{aligned}
& F_{\text {net }}=m \frac{d v}{d t} \\
& F+0=\left(m_{0}-\mu t\right) \frac{d v}{d t} \\
\therefore \quad & F=\left(m_{0}-\mu t\right) \frac{d v}{d t} .
\end{aligned}
$$

Q. 41 (C)

Neglecting gravity,
$\mathrm{v}=\mathrm{u} \ell \mathrm{n}\left(\frac{\mathrm{m}_{0}}{\mathrm{~m}_{\mathrm{t}}}\right)$;
$u=$ ejection velocity w.r.t. balloon.
$\mathrm{m}_{0}=$ initial mass $\quad \mathrm{m}_{\mathrm{t}}=$ mass at any time t .
$=2 \ell n\left(\frac{\mathrm{~m}_{0}}{\mathrm{~m}_{0} / 2}\right)=2 \ell \mathrm{n} 2$.

Q. $42 \quad((\mathbf{a}) \&(b))$

(a) Since the speed remains same for both sand and car at same instant
$\therefore \quad$ Momentum is conserved in both A and C point
(b) B

Car maintains the same speed.

JEE-ADVANCED

MCQ/COMPREHENSION/COLUMN MATCHING
Q. 1 (A,B,C,D)
Q. 2 (A, B)
Q. 3 (B, D)

Center of mass of ring is at centre and centre of mass of chord AB is at its mid point so centre of mass of this combination lie at the line which makes 45° with x axis.

Possible combination

$$
\left(\frac{\mathrm{R}}{3}, \frac{\mathrm{R}}{3} ; \frac{\mathrm{R}}{4}, \frac{\mathrm{R}}{4}\right)
$$

Q. 4 (B, C)
Q. 5
(B,D)
Q. 6 (C,D)
Q. 7 (B,D)

$\mathrm{P}_{\mathrm{i}}=\mathrm{mv}$ (i)
$\mathrm{P}_{\mathrm{f}}=(\mathrm{m}+\mathrm{m}) \mathrm{v}^{\prime}$
at maximum compression
$\mathrm{P}_{\mathrm{i}}=\mathrm{P}_{\mathrm{f}} \quad \mathrm{v}^{\prime}=\mathrm{v} / 2$
By energy compression
$\frac{1}{2} \mathrm{mv}^{2}+0=\frac{1}{2}(2 \mathrm{~m})(v)^{2}+\frac{1}{2} k x^{2}$
$\mathrm{kx}^{2}=\frac{\mathrm{mv}^{2}}{2} \Rightarrow \mathrm{x}=\sqrt{\frac{\mathrm{m}}{2 \mathrm{k}}} \times \mathrm{v}$.
at maximum compression $\mathrm{k}=\frac{1}{2}(\mathrm{~m}+\mathrm{m}) \mathrm{v}^{2} \Rightarrow \mathrm{k}=\mathrm{mv}^{2}$ $=\mathrm{mv}^{2} / 4$.
Q. 8
(A,D)
Q. 9 (B,C)
Q. 10 (A,D)
Q. 11 (A,B,C,D)
Q. 12 (A,C)

$$
\mathrm{mv}=\mathrm{nv} \mathrm{v}^{\prime} \mathrm{m} \Rightarrow \mathrm{v}^{\prime}=\frac{\mathrm{v}}{\mathrm{n}}
$$

time for first collisen is $t_{1}=\frac{L}{V}$ (2nd block)
2nd collisions $\mathrm{t}_{2}=\frac{2 \ell}{\mathrm{~V}}=2 \mathrm{t}_{1}$
(3rd block)

$$
\begin{aligned}
& \text { so } \quad \mathrm{t}=\mathrm{t}_{1}+2 \mathrm{t}_{1}+3 \mathrm{t}_{1}+\mathrm{at}_{1} \ldots \ldots \ldots . .(\mathrm{n}-1) \mathrm{t}_{1} . \\
& \left.\mathrm{t}=\mathrm{t}_{1}[1+2+3] \ldots \ldots \ldots \ldots \ldots \ldots . .(\mathrm{n}-1)\right] \\
& =\frac{(\mathrm{n}-1)(\mathrm{n}-1+1)}{2}=\frac{\mathrm{n}(\mathrm{n}-1)}{2}
\end{aligned}
$$

so $\quad t=\frac{L}{2 x} n(n-1)$.
Q. 13 (A,B,C,D)
$v \cos \phi=u \cos \theta$
$v \sin \phi=e u \sin \theta$
$v^{2}=u \sqrt{\cos ^{2} \theta+e^{2} \sin ^{2} \theta}$
$\mathrm{v}=\mathrm{u} \sqrt{\left(1-\sin ^{2} \theta\right)+\mathrm{e}^{2} \sin ^{2} \theta}$

$\therefore \mathrm{v}=\mathrm{u} \sqrt{1-\left(1-\mathrm{e}^{2}\right) \sin ^{2} \theta}$
$\tan \phi=\operatorname{etan} \theta$.
$\mathrm{I}=\mathrm{m}\left(\mathrm{v}_{\mathrm{LOI}}-\mathrm{u}_{\mathrm{LOI}}\right)$
$=\mathrm{m}($ eusin $\theta-u \sin \theta)$
$=\mathrm{mu}(1+\mathrm{e}) \sin \theta$.
$\mathrm{k}_{\mathrm{i}}=\frac{1}{2} \mathrm{mu}^{2} \quad \mathrm{k}_{\mathrm{f}}=\frac{1}{2} \mathrm{mv}^{2}$
$\frac{\mathrm{k}_{\mathrm{f}}}{\mathrm{k}_{\mathrm{i}}}=\frac{1 / 2 \mathrm{mv}^{2}}{1 / 2 \mathrm{mu}^{2}}=\cos ^{2} \theta+\mathrm{e}^{2} \sin ^{2} \theta$.
Q. 14 (A,C,D)
$a=\frac{f}{m}$ for elastic collission $e=1$
$\mathrm{v}_{1}{ }^{2}=0+2 \mathrm{ad}$
$\mathrm{v}_{\mathrm{b} 1}^{2}=\frac{2 \mathrm{~F}}{\mathrm{~m}} \cdot \mathrm{~d}_{\mathrm{v}_{\mathrm{b} 1}}=\sqrt{\frac{2 \mathrm{Fd}}{\mathrm{m}}}$
after collisin $\mathrm{v}_{\mathrm{b} 2}=0$.
Q. 15 (B,D)
Q. 16 (B,C)

$$
\begin{aligned}
& \mathrm{u}_{1}=\mathrm{v} \mathrm{v}_{2}=-(\mathrm{v}+2 \mathrm{u}) \quad \mathrm{e}=1 . \\
& |\mathrm{vdt}|=\mathrm{m}\left(\mathrm{v}_{1}-\mathrm{u}_{1}\right) \\
& \mathrm{vdt}=\mathrm{m}(+\mathrm{v}+2 \mathrm{u}+\mathrm{v}) \\
& \mathrm{vdt}=2 \mathrm{~m}(\mathrm{u}+\mathrm{v}) . \\
& \mathrm{v}=\frac{2 \mathrm{~m}(\mathrm{u}+\mathrm{v})}{\mathrm{dt}} . \\
& \mathrm{u}_{1}=\mathrm{v} \mathrm{v}_{1}=2 \mathrm{u}+\mathrm{v} \\
& \Delta \mathrm{k}=\frac{1}{2} \mathrm{mv}_{1}^{2}-\frac{1}{2} \mathrm{mu}_{1}^{2}=\frac{1}{2}\left[\mathrm{~m}(2 \mathrm{u}+\mathrm{v})^{2}-\mathrm{v}^{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{m}{2}\left[4 u^{2}+v^{2}+4 u v-v^{2}\right] \\
& =2 m u(u+v)
\end{aligned}
$$

By energy compression
$\mathrm{mv}^{2}+0=(2 \mathrm{~m})+\mathrm{kx}^{2}$
$\mathrm{kx}^{2}=\Rightarrow \mathrm{x}=$.
at maximum compression
$\mathrm{k}=(\mathrm{m}+\mathrm{m}) \mathrm{v}^{2} \Rightarrow \mathrm{k}=\mathrm{mv}^{2}=\mathrm{mv}^{2} / 4$.

Q. 17 (A,C)

$\sqrt{(\mathrm{Vt})^{2}+(\mathrm{L}-\mathrm{vt})^{2}} \leq \mathrm{L}$
$2 \mathrm{~V}^{2} \mathrm{t}^{2}+\mathrm{L}^{2}-2 \mathrm{LVt} \leq \mathrm{L}^{2}$
$\mathrm{Vt}-\mathrm{L} \leq 0$
$t \leq \frac{L}{V}$
Q. 18 (A,B,D)

For minimum kinetic energy
$\mathrm{MV}_{0}=3 \mathrm{MV} \Rightarrow \mathrm{V}=\mathrm{V}_{0} / 3$
$\therefore \Delta \mathrm{K}=-\left[\frac{1}{2} 3 \mathrm{~m}\left(\frac{\mathrm{~V}_{0}}{3}\right)^{2}-\frac{1}{2} \mathrm{mv}_{0}^{2}\right]$
$=2$ Joule
Q. 19 (A,B,C)
$\xrightarrow[(A)]{2 \mathrm{~m} / \mathrm{sec}} \underset{(\mathrm{B})}{4 \mathrm{~m} / \mathrm{sec}}$

Momentum conservation
$1 \times 21-2 \times 4=1 \times 1+2 \times \mathrm{V}^{\prime}$
$\mathrm{V}^{\prime}=6 \mathrm{~m} / \mathrm{s}$
$e=\frac{6-1}{21+4}=\frac{1}{5}$
Loss of kinetic energy $=k_{f}-k_{i}$
$=\frac{1}{2} \times 1 \times(1)^{2}+\frac{1}{2} \times 2 \times(6)^{2}$
$-\left(\frac{1}{2} \times 1 \times(21)^{2}+\frac{1}{2} \times 2 \times(4)^{2}\right)$
$=200 \mathrm{~J}$
Q. 20 (A,B,C,D)

Inelastic collision
$0<\mathrm{e}<1$

Q. 21 (B,D)

Given

After collision

$\mathrm{u}_{2}-\mathrm{u}_{1}=\mathrm{v}_{1}$ and $\mathrm{u}_{2}^{\prime}-\mathrm{u}_{1}^{\prime}=\mathrm{v}_{2}$
$\mathrm{e}=\frac{\mathrm{u}_{2}-\mathrm{u}_{1}}{\mathrm{u}_{1}-\mathrm{u}_{2}}$
$\overrightarrow{\mathrm{v}}_{1}=-\overrightarrow{\mathrm{v}}_{2}$ (elastic collision, $\mathrm{e}=1$)
In general for all cases
$\vec{v}_{1}=-k \vec{v}_{2} \quad k \geq 1$
Q. 22 (C)
(a) The acceleration of the centre of mass is

$$
\mathrm{a}_{\mathrm{COM}}=\frac{\mathrm{F}}{2 \mathrm{~m}}
$$

The displacement of the centre of mass at time t will be

$$
\mathrm{x}=\frac{1}{2} \mathrm{a}_{\mathrm{COM}} \mathrm{t}^{2}=\frac{\mathrm{Ft}^{2}}{4 \mathrm{~m}} \text { Ans. }
$$

Q. 23 (A)
Q. 24 (D)
(Q. 22 and Q. 24)

Suppose the displacement of the first block is x_{1} and that of the second is x_{2}. Then,

$$
\mathrm{x}=\frac{\mathrm{mx}_{1}+\mathrm{mx}_{2}}{2 \mathrm{~m}} \quad \text { or, } \frac{\mathrm{Ft}^{2}}{4 \mathrm{~m}}=\frac{\mathrm{x}_{1}+\mathrm{x}_{2}}{2}
$$

or, $\quad x_{1}+x_{2}=\frac{\mathrm{Ft}^{2}}{2 m}$
...(i)
Further, the extension of the spring is $\mathrm{x}_{1}-\mathrm{x}_{2}$. Therefore,

$$
\begin{equation*}
\mathrm{x}_{1}-\mathrm{x}_{2}=\mathrm{x}_{0} \tag{ii}
\end{equation*}
$$

From Eqs. (i) and (ii), $\mathrm{x}_{1}=\frac{1}{2}\left(\frac{\mathrm{Ft}^{2}}{2 \mathrm{~m}}+\mathrm{x}_{0}\right)$
and $\quad \mathrm{x}_{2}=\frac{1}{2}\left(\frac{\mathrm{Ft}^{2}}{2 \mathrm{~m}}-\mathrm{x}_{0}\right)$ Ans.
Q. 25 (B)

As net force in x direction is zero. So from momentum conservation.
$\mathrm{mV}_{0}=(\mathrm{M}+\mathrm{m}) \mathrm{V}_{2}$

$\mathrm{V}_{2}=\frac{\mathrm{MV}_{0}}{\mathrm{M}+\mathrm{m}}$
Q. 26 (B,D)

Velocity of center of mass
$\mathrm{V}_{\text {Сом }}=\frac{\mathrm{MV}+\mathrm{mV}}{\mathrm{M}+\mathrm{m}}=\mathrm{V}$
So both are at rest with respect to centre of mass. And kinetic energy is converted into potential energy.

Q. 27 (C)

By Energy conservation
$\frac{1}{2} \mathrm{mv}_{0}{ }^{2}=\frac{1}{2}(\mathrm{M}+\mathrm{m})\left(\frac{\mathrm{mv}_{0}}{\mathrm{M}+\mathrm{m}}\right)^{2}+\mathrm{mgh}$
After solving
$\Rightarrow \mathrm{h}=\left(\frac{\mathrm{M}}{\mathrm{M}+\mathrm{m}}\right) \frac{\mathrm{V}_{0}^{2}}{2 \mathrm{~g}}$
Q. 28 (C)
V_{1} is the velocity of particel and V_{2} is the velocity of wedge.

$\left(\mathrm{V}_{1}+\mathrm{V}_{2}\right)=$ vel. of particle w.r.t. wedge

$=\mathrm{V}_{0}$
Q. 29 (B,C)

As net force in x direction is zero.
So by momentum conservation
$\mathrm{Mv}_{2}-\mathrm{mv}_{1}=\mathrm{mV}_{0}$
and $\mathrm{V}_{1}+\mathrm{V}_{2}=\mathrm{V}_{0}$

Q. 30 (B)

As net force in x direction is zero.
So by momentum conservation
$\mathrm{MV}_{2}-\mathrm{mV}_{1}=\mathrm{mV}_{0}$
$\mathrm{V}_{1}+\mathrm{V}_{2}=\mathrm{V}_{0}$
By solving

$$
\mathrm{V}_{1}=\mathrm{V}_{0}\left(\frac{\mathrm{M}-\mathrm{m}}{\mathrm{M}+\mathrm{m}}\right)
$$

Q. 31 (A,B,C,D)
(a) $\because \mathrm{V}_{1}+\mathrm{V}_{2}=\mathrm{V}_{0}$
$\mathrm{V}_{2}=\mathrm{V}_{0}-\mathrm{V}_{0}\left(\frac{\mathrm{M}-\mathrm{m}}{\mathrm{M}+\mathrm{m}}\right)$
$=\frac{(\mathrm{M}+\mathrm{m}) \mathrm{V}_{0}-\mathrm{V}_{0} \mathrm{M}+\mathrm{V}_{0} \mathrm{~m}}{\mathrm{M}+\mathrm{m}}$
$=\frac{2 m V_{0}}{M+m}$
K.E. $=\frac{1}{2} \times \mathrm{M} \times \frac{4 \mathrm{~m}^{2} \mathrm{~V}_{0}^{2}}{(\mathrm{M}+\mathrm{m})^{2}}$
$\left[\because \mathrm{h}=\frac{\mathrm{M}}{(\mathrm{m}+\mathrm{M})} \frac{\mathrm{V}_{0}^{2}}{2 \mathrm{~g}}\right]$
\therefore K.E. $=\frac{4 \mathrm{~m}^{2}}{(\mathrm{~m}+\mathrm{M})} \mathrm{gh}$
(b) $\quad V_{2}=\frac{2 \mathrm{mv}_{0}}{\mathrm{M}+\mathrm{m}}$
(c) Δ K.E. $=\mathrm{k}_{\mathrm{f}}-\mathrm{k}_{\mathrm{i}}$

$$
\begin{aligned}
& =\frac{1}{2} \mathrm{M}\left(\frac{4 \mathrm{~m}^{2} \mathrm{~V}_{0}^{2}}{(\mathrm{M}+\mathrm{m})^{2}}\right)-0 \\
& =\frac{4 \mathrm{mM}}{(\mathrm{~m}+\mathrm{M})^{2}}\left(\frac{1}{2} \mathrm{mV}_{0}^{2}\right)
\end{aligned}
$$

(d) \because vel. of wedge $\mathrm{V}_{2}=\frac{2 \mathrm{mV}_{0}}{\mathrm{M}+\mathrm{m}}$

Vel. of particle $V_{1}=V_{0}\left(\frac{M-m}{M+m}\right)$
$\mathrm{V}_{\text {COM }}=\frac{\mathrm{MV}_{2}+\left(-\mathrm{mV}_{1}\right)}{\mathrm{M}+\mathrm{m}}$
$=\frac{\mathrm{mv}_{0}}{\mathrm{M}+\mathrm{m}}$
Q. 32 (A)
$\mathrm{a}=\frac{\mathrm{m}_{1}-\mathrm{m}_{2}}{\mathrm{~m}_{1}+\mathrm{m}_{2}} \mathrm{~g}$
Let $\mathrm{m}_{1}=(\mathrm{L}+\mathrm{x}) \lambda$ and $\mathrm{m}_{2}=(\mathrm{L}-\mathrm{x}) \lambda$
where λ is mass per unit length

$$
a=\frac{2 x}{2 L} g=\frac{x}{L} g
$$

Q. 33 (C)

from energy conservation

Q. 34 (A)

During collision, forces act along line of impact. As collision is elastic and both the balls have same mass, velocities are exchanged along the line of impact. Therefore ball B moves with velocity $\mathrm{V}_{\mathrm{B}| |}$, that is equal to $u \cos 30^{\circ}$. Ball A moves perpendicular to the line of impact with velocity $\mathrm{V}_{\mathrm{A} \perp}=\mathrm{u} \cos 60^{\circ}$. Along the line of impact, ball A does not have any velocity after the collision.
Therefore velocity of ball A in vector form after the collision

$=\mathrm{V}_{\mathrm{A} \perp} \cos 60^{\circ} \mathrm{i}+\mathrm{V}_{\mathrm{A} \perp} \cos 30^{\circ} \mathrm{j}$
$=\left(u \cos 60^{\circ}\right) \cos 60^{\circ} i+\left(u \cos 60^{\circ}\right) \cos 30^{\circ} j$
$=4 \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \mathrm{i}+4 \cdot \frac{1}{2} \cdot \frac{\sqrt{3}}{2} \cdot \mathrm{j}=(\mathrm{i}+\sqrt{3} \mathrm{j}) \mathrm{m} / \mathrm{s}$

Q. 35 (C)

Using impulse-momentum equation for ball B

$\int \mathrm{Ndt}=\overrightarrow{\mathrm{p}}_{\mathrm{f}}-\overrightarrow{\mathrm{p}}_{\mathrm{i}}$ and as $\overrightarrow{\mathrm{p}}_{\mathrm{i}}=0$
$\int \mathrm{Ndt}=\overrightarrow{\mathrm{p}}_{\mathrm{f}}$
$=\left(\mathrm{mu} \cos 30^{\circ}\right) \cos 30 \mathrm{i}-\left(\mathrm{mu} \cos 30^{\circ}\right) \cos 60^{\circ} \mathrm{j}$
$=m \cdot 4 \cdot \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2} \cdot i-m \cdot 4 \cdot \frac{\sqrt{3}}{2} \cdot \frac{1}{2} \cdot \mathrm{j}$
$=(3 \mathrm{mi}-\sqrt{3} \mathrm{mj}) \mathrm{kg} \frac{\mathrm{m}}{\mathrm{s}}$
Q. 36 (B)

Suppose V_{2} is velocity of ball B along the line of impact and V_{1} is velocity of ball A along the line of impact, after the collision, as shown.
Then $\frac{1}{2}$ (Velocity of approach) $=$ Velocity of separation $\frac{1}{2}\left[\frac{\sqrt{3}}{2} \cdot \mathrm{u}\right]=\mathrm{V}_{2}-\mathrm{V}_{1}$

Conserving momentum along the line of impact
m. $\frac{\sqrt{3}}{2} u=m . V_{2}+m V_{1}$
.... (2)
Solving and using $u=4 \mathrm{~m} / \mathrm{s}$

$$
\mathrm{V}_{2}=\frac{3 \sqrt{2}}{2} \mathrm{~m} / \mathrm{s}
$$

$\overrightarrow{\mathrm{V}}_{2}=\frac{3 \sqrt{3}}{2} \cos 30^{\circ} \mathrm{i}-\frac{3 \sqrt{3}}{2} \cos 60^{\circ} \mathrm{j}$
$=\left(\frac{9}{4} \mathrm{i}-\frac{3 \sqrt{3}}{4} \mathrm{j}\right) \mathrm{m} / \mathrm{s}$
Q. 37 (A)

As $\mathrm{F}_{\text {net }}$ in x direction $=0$
$\mathrm{mx}_{1}=\mathrm{mx}_{2}\left[\because \mathrm{~F}_{\mathrm{x}}=0\right]$
$\mathrm{x}_{1}=\mathrm{x}_{2}$
Now $x_{1}+x_{2}=L \sin \theta$
$\Rightarrow \mathrm{CM}_{\mathrm{f}}=\frac{\mathrm{L} \sin \theta}{2}$

Q. 38 (D)
$\mathrm{V}_{\mathrm{CMx}}=0$ and $\mathrm{F}_{\mathrm{x}}=0$
from momentum conservation
$\mathrm{mv}_{1}=\mathrm{mv}_{2} \Rightarrow \mathrm{v}_{1}=\mathrm{v}_{2}=\mathrm{v}$ (let)
Now energy conservation
$\operatorname{mg} \ell(1-\cos \theta)=2\left[\frac{1}{2} \mathrm{mv}^{2}\right]$
$v^{2}=g \ell(1-\cos \theta)$
Distance from centre of mass $=R=\frac{\ell}{2}$
So $\mathrm{T}=\frac{\mathrm{mv}^{2}}{\mathrm{R}}=\frac{\mathrm{mg} \ell(1-\cos \theta)}{\ell / 2}$
$\mathrm{T}=2 \mathrm{mg}(1-\cos \theta)$

Q. 39 (A)

from previous question
$\mathrm{v}_{\text {max }}=\mathrm{V}=[\mathrm{g} \ell(1-\cos \theta)]^{1 / 2}$
Q. 40 (B)

Only in vertical direction
$\left[\because \mathrm{f}_{\mathrm{x}}=0\right.$ always $]$
So displacement $=\frac{\mathrm{L}}{2}-\frac{\mathrm{L}}{2} \cos \theta$
$=\frac{\mathrm{L}}{2}[1-\cos \theta]$
Q. 41 (D)

By momentum conservation
$\mathrm{O}=\mathrm{m}_{1}\left(\mathrm{u}_{\mathrm{rel}}-\mathrm{v}^{\prime}\right)-\left(\mathrm{m}_{2} \mathrm{v}^{\prime}+\mathrm{Mv}^{\prime}\right)$
$\mathrm{m}_{1}\left(\mathrm{u}_{\mathrm{rel}}-\mathrm{v}^{\prime}\right)=\mathrm{m}_{2} \mathrm{v}^{\prime}+\mathrm{Mv}^{\prime}$
$\mathrm{v}^{\prime}=\frac{\mathrm{m}_{1} \mathrm{u}_{\text {rel }}}{\mathrm{m}_{1}+\mathrm{m}_{2}+\mathrm{M}}$
Q. 42 (A)
$\overrightarrow{\mathrm{F}}_{\mathrm{net}}=0$
$\overrightarrow{\mathrm{V}}_{\mathrm{com}}=0$
$\therefore \mathrm{COM}$ is at rest.

Q. 43 (A)

Q. 44 (A) p (B) q (C) p,r (D) q, s
(A) If velocity of block A is zero, from conservation of momentum, speed of block B is $2 u$. Then K.E. of block $B=\frac{1}{2} m(2 u)^{2}=2 \mathrm{mu}^{2}$ is greater than net mechanical energy of system. Since this is not possible, velocity of A can never be zero.
(B) Since initial velocity of B is zero, it shall be zero for many other instants of time.
(C) Since momentum of system is non-zero, K.E. of system cannot be zero. Also KE of system is minimum at maximum extension of spring.
(D) The potential energy of spring shall be zero whenever it comes to natural length. Also P.E. of spring is maximum at maximum extension of spring.
Q. $45 \mathrm{~A}(\mathrm{q}),(\mathrm{B}) \mathrm{p}, \mathrm{q}(\mathrm{C}) \mathrm{r}(\mathrm{D}) \mathrm{s}$
(A) Initial velocity of centre of mass of given system is zero and net external force is in vertical direction. Since there is shift of mass downward, the centre of mass has only downward shift.
(B) Obviously there is shift of centre of mass of given system downwards. Also the pulley exerts a force on string which has a horizontal component towards right. Hence centre of mass of system has a rightward shift.
(C) Both block and monkey moves up, hence centre of mass of given system shifts vertically upwards.
(D) Net external force on given system is zero. Hence centre of mass of given system remains at rest.

NUMERICAL VALUE BASED

Q. $1 \quad[6 \mathrm{~m} / \mathrm{s}]$
Q. 2 [650.00]

Using relative velocity time of slight before collision will be

$$
t=\frac{20}{20}=15
$$

By COM at the time of collision

$$
\begin{aligned}
& 3 \times 10-1 \times 10=4 \times v \\
& 2 \times 10=4 \times v \\
& 5=v
\end{aligned}
$$

$$
\mathrm{v}=5 \mathrm{~ms}^{-1}
$$

For 1-D motion

$$
\begin{aligned}
& v^{2}=u^{2}+2 \text { as } \\
& =5^{2}+2 \times 10 \times 15 \\
& =25+300=325 \\
& \mathrm{~K}=650 \mathrm{~J}
\end{aligned}
$$

Q. 3 [800.00]

By conservation of momentum

$$
\begin{aligned}
& -200 \times v_{1}+2 \times v_{2}=0 \\
& 100 v_{1}=v_{2} \quad \ldots(1) \\
& v_{1}=v_{2} / 100 \\
& \left(\frac{v_{2}}{100}\right) \cdot t=8
\end{aligned}
$$

$$
\mathrm{t}=\frac{100}{\mathrm{v}_{2}}
$$

$v_{2} \cdot t=x$
$\mathrm{x}=\mathrm{v} / 2 \cdot \frac{800}{\mathrm{v}_{2}}$
$x=800 \mathrm{~m}$
Q. 4
[50]
At the topmost point of the trajectory, the momentum of the system is zero. From conservation of momentum,

$$
\mathrm{m}_{1} \overrightarrow{\mathrm{v}}_{1}+\mathrm{m}_{2} \overrightarrow{\mathrm{v}}_{2}+\mathrm{m}_{3} \overrightarrow{\mathrm{v}}_{3}=0
$$

as $\mathrm{m}_{1}=\mathrm{m}_{2}=\mathrm{m}_{3}$

$$
\begin{equation*}
\vec{v}_{1}+\vec{v}_{2}+\vec{v}_{3}=0 \tag{1}
\end{equation*}
$$

The second and third fragments reach the ground simultaneously, therefore vertical components of v_{2} and v_{3} must be same; secondly, v_{1} is downwards, the vertical components of v_{2} and v_{3} are $\frac{-v_{1}}{2}$ (i.e. directed upwards)
for first fragment, $h=v_{1} t_{1}+\frac{\mathrm{g} \mathrm{t}_{1}^{2}}{2}$
for second fragment, $\mathrm{h}=\frac{-\mathrm{v}_{1} \mathrm{t}_{2}}{2}+\frac{\mathrm{g} \mathrm{t}_{2}^{2}}{2}$
from equations (2) \& (3), $\mathrm{v}_{1}=\frac{\mathrm{g}\left(\mathrm{t}_{2}^{2}-\mathrm{t}_{1}^{2}\right)}{2 \mathrm{t}_{1}+\mathrm{t}_{2}}$
and $h=\frac{g t_{1} t_{2}}{2}\left(\frac{t_{1-2} t_{2}}{2 t_{1}+t_{2}}\right)$
Q. 5 [18]
$v=\sqrt{u^{2}+2 g(h)} ; e v=\sqrt{2 g(5)}$
$\frac{1}{4} v^{2}=100 ; v^{2}=400 ; v=20$
$400=u^{2}+2 \mathrm{gh}$
$400=\mathrm{u}^{2}+20 \mathrm{~h}$ and $\mathrm{h}=3.8 \mathrm{~m}$
$u^{2}=324 \Rightarrow u=18$
Q. 6 [9]
$g=\frac{(2 \times 4+1)(2)^{2}}{2(1)(2)(1)^{2}}$
D $=2$
$\mathrm{M}=2$
$\mathrm{t}=1$
$\mathrm{t}=1 \mathrm{~s}$
$\left(\frac{m}{2 M+m}\right) g=a$
$v^{2}=0+2 \mathrm{aH}$
$\mathrm{D}=\mathrm{vt}$
$\mathrm{D}^{2}=(2 \mathrm{aH}) \mathrm{t}^{2}$

$$
\begin{aligned}
& \frac{D^{2}}{2 \mathrm{Ht}^{2}}=\mathrm{a}=\mathrm{g}\left(\frac{\mathrm{~m}}{\mathrm{~m}+2 \mathrm{M}}\right) \\
& \mathrm{g}=\frac{(\mathrm{m}+2 \mathrm{M}) \mathrm{D}^{2}}{2 \mathrm{Ht}^{2} \mathrm{~m}}
\end{aligned}
$$

Let displacement of plank be represented by $x \hat{i}+y \hat{j}$

For x-component

$$
\begin{aligned}
& 50[L-x]-100 x-50 x=0 \\
& x=\frac{L}{4}
\end{aligned}
$$

Similarly y-component

$$
\begin{aligned}
& 50[L-y]-100 y-50 y=0 \\
& y=\frac{L}{4}
\end{aligned}
$$

Thus $\overrightarrow{\mathrm{r}}=-\frac{\mathrm{L}}{4} \hat{\mathrm{i}}-\frac{\mathrm{L}}{4} \hat{\mathrm{j}} \quad$ or $|\overrightarrow{\mathrm{r}}|=\frac{\mathrm{L}}{4} \sqrt{2}$
[50]
By Energy Conservation
$\operatorname{mg} \frac{\mathrm{R}}{\sqrt{2}}=\frac{1}{2} \frac{\mathrm{~m}(\sqrt{2} \mathrm{R})^{2} \omega^{2}}{3}$
$\Rightarrow \omega^{2}=\frac{3 \mathrm{~g}}{\sqrt{2 R}}$
Now, $2 \mathrm{~N} \cos 45^{\circ}-\mathrm{mg}=\mathrm{m} \times \frac{3 \mathrm{~g}}{\sqrt{2} R} \times \frac{\mathrm{R}}{\sqrt{2}}$
$\Rightarrow \mathrm{N}=\frac{5 \mathrm{mg}}{2 \sqrt{2}} \quad=50$

Q. 9 [75]

From the principle of conservation of linear momentum we have

$$
\mathrm{mu}=\mathrm{M}_{1} \mathrm{v}+\mathrm{mv}
$$

and

$$
m v^{\prime}=\left(m+M_{2}\right) v
$$

or $20 \mathrm{u}=1000 \mathrm{v}+20 \mathrm{v}$,
and $\quad 20 \mathrm{v}^{\prime}=(20+2980) \mathrm{v}$
or

$$
\begin{equation*}
\mathrm{u}=50 \mathrm{v}+\mathrm{v} \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{v}^{\prime}=150 \mathrm{v} \tag{ii}
\end{equation*}
$$

From (i) and (ii), we get $3 u=v^{\prime}+3 v^{\prime}=4 v^{\prime}$ or $\mathrm{v}^{\prime}=3 \mathrm{u} / 4=75$

Q. 10 [2]

The position of centre of mass of the system is y_{cm}.
$\mathrm{y}_{\mathrm{cm}}=\frac{\mathrm{m}_{1} \times \mathrm{H}+\mathrm{m}_{2} \times \frac{\mathrm{h}}{2}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}$
Where $\mathrm{m}_{1}=1 \mathrm{~kg}, \mathrm{~m}_{2}=\left(0.4 \times \mathrm{h} \times 10^{3}\right) \mathrm{kg}$

$$
=(400 \mathrm{~h}) \mathrm{kg}
$$

$y_{\mathrm{cm}}=\frac{1 \times \mathrm{H}+(400 \mathrm{~h}) \times \frac{\mathrm{h}}{2}}{(1+400 \mathrm{~h})}=\frac{\mathrm{H}+200 \mathrm{~h}^{2}}{(1+400 \mathrm{~h})}$
for y_{cm} to be lowest (minimum)

$$
\frac{\mathrm{dy}_{\mathrm{cm}}}{\mathrm{dh}}=0
$$

$200 h^{2}+h-H=0$
$\mathrm{h}=2 \mathrm{~cm}$

KVPY

PREVIOUS YEAR'S

Q. 1 (D)

\because external force does not work on system So according to concept of centre of mass. $36 \mathrm{x}=9 \times(20-\mathrm{x})$

Q. 2 (B)

$\mathrm{a}_{\mathrm{B}}>\mathrm{a}_{\mathrm{C}}>\mathrm{a}_{\mathrm{A}}$
$\mathrm{a}_{\mathrm{B}}=\mathrm{g}$
$\overrightarrow{\mathrm{a}}_{\mathrm{A} / \mathrm{CM}}=\overrightarrow{\mathrm{a}}_{\mathrm{A}}-\overrightarrow{\mathrm{a}}_{\mathrm{CM}}(\uparrow)$
$\overrightarrow{\mathrm{a}}_{\mathrm{B} / \mathrm{CM}}=\overrightarrow{\mathrm{a}}_{\mathrm{B}}-\overrightarrow{\mathrm{a}}_{\mathrm{CM}}(\downarrow)$
Q. 3 (B)

Applying the law of conservation of momentum, $\mathrm{mv}+0=(2 \mathrm{~m}) \mathrm{v}^{\prime}$

$$
v^{\prime}=v / 2
$$

$K \cdot E=\frac{1}{2}(2 m) v^{\prime 2}$
Q. 4 (D)

Under influence of constant force centre of mass follows its original path

$$
\begin{aligned}
& R=\frac{30 \times 30 \times \frac{1}{2}}{10}=45 \mathrm{~m} \\
& 45=\frac{ \pm \mathrm{m} \times 27+\mathrm{mx}}{\mathrm{~m}+\mathrm{m}} \\
& x=63,117 \mathrm{~m}
\end{aligned}
$$

Q. 5 (D)

Using energy conservation and law of restitution and momentum conservation.
Q. 6 (A)

CM will go downwards
Q. 7 (A)

$3=(6+x) \tan \theta\left[1-\frac{6+x}{12}\right]$
$3=\frac{(6+x)(6-x) \tan \theta}{12}$
$1.4=x \tan \theta\left[1-\frac{x}{12}\right]$
$1.4=\frac{\mathrm{x}(12-\mathrm{x})}{12} \tan \theta$
$\frac{30}{14}=\frac{36-x^{2}}{12 x-x^{2}}$
$360 x-30 x^{2}=36 \times 14-14 x^{2}$
$16 x^{2}-360 x+36 \times 14=0$
$x=\frac{360 \pm \sqrt{(360)^{2}-4 \times 36 \times 14 \times 16}}{32}$
$x=\frac{360 \pm 312}{32}=\frac{48}{32}=1.5$
Q. 8 (B)

$X_{c m}=\frac{m_{1} \mathrm{X}_{1}-\mathrm{m}_{2} \mathrm{X}_{2}}{\mathrm{~m}_{1}-\mathrm{m}_{2}}$
m_{1} is the mass of square wooden sheet of side a \& m_{2} is the mass of removed square portion of side b. x -coordinate of C.O.M. of remaining λ-shaped sheet.
\Rightarrow is areal mass density
$\Rightarrow \mathrm{m}_{1}=\lambda \mathrm{a}^{2}, \mathrm{~m}_{2}=\lambda \mathrm{b}^{2}$
$\mathrm{X}_{\mathrm{cm}}=\frac{\lambda\left(\mathrm{a}^{2}\right)\left(\frac{\mathrm{a}}{2}\right)-\lambda\left(\mathrm{b}^{2}\right)\left(\frac{\mathrm{b}}{2}\right)}{\lambda \mathrm{a}^{2}-\lambda \mathrm{b}^{2}}$
$\mathrm{X}_{\mathrm{cm}}=\frac{1}{2}\left(\frac{\mathrm{a}^{3}-\mathrm{b}^{3}}{\mathrm{a}^{2}-\mathrm{b}^{2}}\right)$
similarly $Y_{c m}=\frac{1}{2}\left[\frac{a^{3}-b^{3}}{a^{2}-b^{2}}\right]$
centre of mass lies on point $\mathrm{P}(\mathrm{b}, \mathrm{b})$
$\Rightarrow X_{c m}=b$ and $Y c m=b$
$a^{2}+b^{2}+a b=2 a b+2 b^{2}$
$a^{2}=a b+b^{2}$
$\left(\frac{a}{b}\right)^{2}=\left(\frac{a}{b}\right)+1$

Let $x=\frac{a}{b}$
$\mathrm{x}^{2}-\mathrm{x}-1=0$
$\mathrm{x}=\frac{1 \pm \sqrt{1+4}}{2}$
$x=\frac{\sqrt{5}+1}{2}$
$\frac{\mathrm{a}}{\mathrm{b}}=\frac{\sqrt{5}+1}{2}$
Q. 9 (A)

Planar circular segment can be seen as it consist of Arc element.

Mass of element $=\mathrm{dm}=\sigma \times \mathrm{r} \theta \times \mathrm{dr}$ centre of mass of Arc element is at $\frac{\mathrm{r} \sin \frac{\theta}{2}}{\frac{\theta}{2}}$
\therefore Centre of mass location of segment

$$
\begin{aligned}
& =\frac{\Sigma\left(\mathrm{dm}\left[\frac{\mathrm{r} \sin \theta / 2}{\theta / 2}\right]\right)}{\Sigma \mathrm{dm}}=\frac{\frac{\int_{0}^{\mathrm{R}} \sigma \mathrm{r} \theta \mathrm{dr} \times \mathrm{r} \sin (\theta / 2)}{\theta / 2}}{\int_{0}^{\mathrm{R}} \sigma r \theta d r} \\
& \Rightarrow 2\left[\frac{\sin \frac{\theta}{2}}{\theta}\right] \frac{\mathrm{R}^{3}}{3 \times \frac{\mathrm{R}^{2}}{2}} \Rightarrow \frac{4}{3} \mathrm{R} \frac{\sin (\theta / 2)}{\theta}
\end{aligned}
$$

Q. 10 (C)

Equal are
$\frac{1}{2} \mathrm{ah}=\mathrm{ab}$
$h=2 b$
$M_{1} \frac{h}{3}=M_{2} \frac{b}{2}$ [centre of mass of combination at the mid-point of their common edge]
$\frac{\mathrm{M}_{1}}{\mathrm{M}_{2}}=\frac{3}{2} \frac{\mathrm{~b}}{\mathrm{~h}}$
$\frac{\mathrm{M}_{1}}{\mathrm{M}_{2}}=\frac{3}{2}\left[\frac{1}{2}\right]$
$\frac{\mathrm{M}_{1}}{\mathrm{M}_{2}}=\frac{3}{4}$

Q. 11 (A)

Centre of mass of remaining cube x coordinate $=\mathrm{b}$

$X_{C M}=\frac{\rho a^{3} \times \frac{a}{2}-\rho b^{3} \times \frac{b}{2}}{\rho a^{3}-\rho b^{3}}$
We will consider removed mass as a negative mass
$\mathrm{b}=\frac{\frac{\rho \mathrm{a}^{4}}{2}-\frac{\rho b^{4}}{2}}{\rho \mathrm{a}^{3}-\rho b^{3}}$
$a^{3} b-b^{4}=\frac{a^{4}}{2}-\frac{b^{4}}{2}$
$2 a^{3} b-2 b^{4}=a^{4}-b^{4}$
put $\mathrm{a}=\mathrm{bx} \Rightarrow 2 \mathrm{~b}^{4} \mathrm{x}^{3} \mathrm{~b}-2 \mathrm{~b}^{4}=\mathrm{b}^{4} \mathrm{x}^{4}-\mathrm{b}^{4}$
$2 x^{3}-1=x^{4}$
$2 x^{3}-2+1=x^{4}$
$2\left[x^{3}-1\right]=\left(x^{2}-1\right)\left(x^{2}+1\right)$
$2[x-1]\left[x^{2}+1+x\right]=[x-1][x+1]\left[x^{2}+1\right]$
$2 x^{2}+2+2 x=x^{3}+x+x^{2}+1$
$\mathrm{x}^{3}-\mathrm{x}^{2}-\mathrm{x}-1=0$

Q. 12 (A)

Velocity of sand particle just before striking the bottom
is $v=u+a t$
$\mathrm{v}=0+10 \times 2=20 \mathrm{~m} / \mathrm{s}$
$\mathrm{pi}=\left(0.2 \times 10^{-3}\right) \times 20$
$\mathrm{pf}=0$
$|\Delta \mathrm{p}|=4 \times 10^{-3} \mathrm{k}-\mathrm{m} / \mathrm{s}$
$\mathrm{f}_{\text {avg }}=\frac{|\Delta \mathrm{p}|}{\Delta \mathrm{t}} \times \mathrm{n}$

$$
\begin{aligned}
& =\frac{4 \times 10^{-3} \times 100}{1} \\
& =0.4 \mathrm{~N}
\end{aligned}
$$

Q. 13 (D)

Q. 14 (B)

Before collision

After collision

By $p_{i}=p_{f}$

$$
\begin{equation*}
\Rightarrow \mathrm{mu},=\mathrm{mv}_{1}+\frac{\mathrm{M}}{2} \mathrm{v}_{2} \Rightarrow \mathrm{v}_{1}+\frac{\mathrm{v}_{2}}{2}=\mathrm{u}_{1} \tag{1}
\end{equation*}
$$

Bye $=l^{\prime}=\frac{v_{2}-v_{1}}{u_{1}} \quad \Rightarrow v_{2}-v_{1}=u_{1}$
By (1) \& (2)
$\mathrm{v}_{2}=\frac{4}{3} \mathrm{u}_{1} \& \mathrm{v}_{1}=\frac{\mathrm{u}_{1}}{3}$
So $\frac{\mathrm{v}_{1}}{\mathrm{v}_{2}}=\frac{1}{4}$
Q. 15 (D)

from momentum conservation
$-m u+m_{1} 3 u=m_{1} v_{1}+m v_{2}$
from energy conservation
$\frac{1}{2} m u^{2}+\frac{1}{2} m_{1} 9 u^{2}=\frac{1}{2} m_{1} v_{1}^{2}+\frac{1}{2} m v_{2}^{2}$
$\frac{1}{2} m u^{2}+\frac{1}{2} m_{1}\left(3 u-v_{1}\right)\left(3 u+v_{1}\right)=\frac{1}{2} m v_{2}^{2}$
from equation ...(1)
$\Rightarrow \mathrm{m}_{1}\left(3 \mathrm{u} \cdot \mathrm{v}_{1}\right)=\mathrm{m}\left(\mathrm{v}_{2}+\mathrm{u}\right)$
$\frac{1}{2} m u^{2}+\frac{1}{2} m\left(v_{2}+u\right)\left(3 u+v_{1}\right)=\frac{1}{2} m v_{2}^{2}$
as $\mathrm{m}_{1} \ggg \mathrm{~m}$, we can assume $\mathrm{v}_{1} \approx 3 \mathrm{u}$

$$
u^{2}+\left(v_{2}+u\right)(6 u)=v_{2}^{2}
$$

$$
\Rightarrow \mathrm{v}_{2}=7 \mathrm{u}
$$

JEE MAIN

PREVIOUS YEAR'S

Q. 1 (2)
$\mathrm{K}_{1}=\frac{\mathrm{P}_{1}^{2}}{2 \mathrm{~m}_{1}} \& \mathrm{~K}_{2}=\frac{\mathrm{P}_{2}^{2}}{2 \mathrm{~m}_{2}}$
$\therefore \frac{\mathrm{K}_{1}}{\mathrm{~K}_{2}}=\left(\frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}\right)^{2} \times\left(\frac{\mathrm{M}_{2}}{\mathrm{M}_{1}}\right)$
$\therefore\left(\frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}\right)^{2}=\frac{\mathrm{M}_{2}}{\mathrm{M}_{1}} \quad \Rightarrow \frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}=\sqrt{\frac{\mathrm{M}_{2}}{\mathrm{M}_{1}}}=\frac{1}{2}$

Q. 2 (3)

Q. 3
$\frac{\mathrm{M}_{1}}{\mathrm{M}_{2}}=\frac{1}{2}$
$\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2}=\mathrm{P}$
$\mathrm{K}_{1}=\frac{\mathrm{P}^{2}}{2 \mathrm{M}_{1}} \quad \mathrm{~K}_{2}=\frac{\mathrm{P}^{2}}{2 \mathrm{M}_{2}}$
$\frac{\mathrm{K}_{1}}{\mathrm{~K}_{2}}=\frac{\mathrm{M}_{2}}{\mathrm{M}_{1}}=\frac{2}{1}$
$=\frac{\mathrm{A}}{1}=\frac{2}{1}=2$
Q. 4 (1)

Using linear momentum conservation in y-direction $\mathrm{P}_{\mathrm{i}}=0$
$P_{f}=m \times \frac{1}{2} v_{1}-m \times \frac{1}{2} v_{2}$
$\mathrm{v}_{1}=\mathrm{v}_{2}$
Q. 5 (1)

$$
\begin{aligned}
& \cos \theta=\frac{\sqrt{3}}{2} \\
& \theta=30^{\circ}
\end{aligned}
$$

Q. $7 \quad$ (3)

From energy conservation,
$\left[\frac{\text { after bullet gets embedded till the }}{\text { system comes momentarily at rest }}\right]$
$(\mathrm{M}+\mathrm{m}) \mathrm{gh}=\frac{1}{2}(\mathrm{M} \mathrm{m}) \mathrm{v}_{2}^{1}$
[v_{1} is velocity after collision]
$\therefore \mathrm{v}_{1}=\sqrt{2 \mathrm{gh}}$
Applying momentum conservation, (just before and just after collision) $\mathrm{mv}=(\mathrm{M}+\mathrm{m}) \mathrm{v}_{1}$

$$
\begin{aligned}
& v=\left(\frac{M+m}{m}\right) v_{1} \frac{6}{10 \times 10^{-3}} \times \sqrt{2 \times 9.8 \times 9.8 \times 10^{-2}} \\
& \approx 831.55 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Q. 8 (4)
$\mathrm{v}_{0}=\sqrt{2 \mathrm{gh}}$
$\mathrm{v}=\mathrm{e} \sqrt{\mathrm{gh}}=\sqrt{2 \mathrm{gh}}$
$\Rightarrow \mathrm{e}=0.9$
$S=h+2 e^{2} h+2 e^{4} h+$ \qquad
$\mathrm{t}=\sqrt{\frac{2 \mathrm{~h}}{\mathrm{~g}}}+2 \mathrm{e} \sqrt{\frac{2 \mathrm{~h}}{\mathrm{~g}}}+2 \mathrm{e}^{2} \sqrt{\frac{2 \mathrm{~h}}{\mathrm{~g}}}+\ldots \ldots .$.
$\mathrm{v}_{\mathrm{av}}=\frac{\mathrm{s}}{\mathrm{t}}=2.5 \mathrm{~m} / \mathrm{s}$
Q. 9 (1)

C comes to rest
V_{cm} of $\mathrm{A} \& \mathrm{~B}=\frac{\mathrm{v}}{2}$
$\Rightarrow \frac{1}{2}$ is $v_{\mathrm{ret}}^{2}=\frac{1}{2} \mathrm{kx}^{2}$
$x=\sqrt{\frac{\mu \times v^{2}}{k}}=\sqrt{\frac{m}{2 k}} v$
From conservation of momentum along x axis;

$$
\begin{aligned}
& \overrightarrow{\mathrm{P}}_{\mathrm{i}}=\overrightarrow{\mathrm{P}}_{\mathrm{f}} \\
& 10 \times 10 \sqrt{3}=200 \cos \theta
\end{aligned}
$$

Q. 11 (20)

Let velocity of $2^{\text {nd }}$ fragment is $\overrightarrow{\mathrm{v}}$ then by conservation of linear momentum
$10(10 \sqrt{3}) \hat{i}=(10)(10 \mathrm{j})+\hat{10} \overrightarrow{\mathrm{v}}$
$\Rightarrow \overrightarrow{\mathrm{v}}=10 \sqrt{3} \hat{\mathrm{i}}-10 \hat{\mathrm{j}}$
$|\overrightarrow{\mathrm{v}}|=\sqrt{300+100}=\sqrt{400}=20 \mathrm{~m} / \mathrm{s}$
Q. 12 (1)

$\mathrm{m}_{1} \mathrm{v}_{1}=-\mathrm{m}_{1} \mathrm{v}+\mathrm{m}_{2} \mathrm{v}$
$v_{1}=-v+\frac{m_{2}}{m_{1}} v$
$\frac{\left(\mathrm{v}_{1}+\mathrm{v}\right)}{\mathrm{v}}=\frac{\mathrm{m}_{2}}{\mathrm{~m}_{1}}$
$\mathrm{e}=\frac{2 \mathrm{v}}{\mathrm{v}_{1}}=1$
$\mathrm{v}=\frac{\mathrm{v}_{1}}{2}$
$\frac{\mathrm{v}_{1}+\mathrm{v}_{1} / 2}{\mathrm{v}_{1} / 2}=\frac{\mathrm{m}_{2}}{\mathrm{~m}_{1}}$
$3=\frac{\mathrm{m}_{2}}{\mathrm{~m}_{1}}$
Q. 13 (4)
Q. 14 (1)
Q. 15 (2)
Q. 16 (25)
Q. 17 (25)
Q. 18 (3)
Q. 19 [2]
Q. 20 (3)
Q. 21 (3)
Q. 22 [1]
Q. 23 (50)

JEE-ADVANCED

PREVIOUS YEAR'S

Q. 1 (D)

$$
\begin{aligned}
\mathrm{R} & =\mathrm{u} \sqrt{\frac{2 \mathrm{~h}}{\mathrm{~g}}} \\
\Rightarrow 20 & =\mathrm{V}_{1} \sqrt{\frac{2 \times 5}{10}} \text { and } 100=\mathrm{V}_{2} \sqrt{\frac{2 \times 5}{10}} \\
\Rightarrow \mathrm{~V}_{1} & =20 \mathrm{~m} / \mathrm{s}, \mathrm{~V}_{2}=100 \mathrm{~m} / \mathrm{sec} .
\end{aligned}
$$

Applying momentum conservation just before and just after the collision
$(0.01)(\mathrm{V})=(0.2)(20)+(0.01)(100)$

$$
\mathrm{V}=500 \mathrm{~m} / \mathrm{s}
$$

Q. 2
(4)
$\mu=0.1$

$\frac{1}{2} \times 0.18 \mathrm{u}^{2}=0.1 \times 0.186 \times 10 \times 0.06$
$0.4=\frac{\mathrm{N}}{10}$
$\mathrm{N}=4$ Ans.
Q. 3 (5)

To complete the vertical circle
$\sqrt{\mathrm{g} \ell_{1}}=\sqrt{5 \mathrm{~g} \ell_{2}}$
$\frac{\ell_{1}}{\ell_{2}}=5$
Q. 4 (A)

At the highest point

before collision

after collision
$\mathrm{v}_{1}=\frac{\mathrm{u}_{0} \cos \alpha}{2} \quad$ (by applying momentum conservation in horizontal direction)
$\mathrm{v}_{2}=\frac{\mathrm{u}_{0} \cos \alpha}{2}$
(by applying momentum
conservation in vertical direction)
$\left(\mathrm{H}=\frac{\mathrm{u}_{0}^{2} \sin ^{2} \alpha}{2 \mathrm{~g}}\right)$
$\theta=45^{\circ}$
Q. 5 (B)

$\mathrm{K}=\frac{1}{2} \mathrm{mg}^{2} \mathrm{t}^{2}$
$\mathrm{K} \propto \mathrm{t}^{2}:$ parabolic graph
then during collision kinetic energy first decreases to elastic potential energy and then increases.
Most appropriate graph is B .
Q. 6 (AB)

If speed of point mass is v, then using conservation of linear momentum $V=\frac{\mathrm{mV}}{\mathrm{M}}$
$\mathrm{mgR}=\frac{1}{2} \mathrm{mv}^{2}+\frac{1}{2} \mathrm{M}\left(\frac{\mathrm{mv}}{\mathrm{M}}\right)^{2} ; \mathrm{mgR}=\frac{1}{2} \mathrm{mv}^{2}\left(1+\frac{\mathrm{m}}{\mathrm{M}}\right)$
$v=\sqrt{\frac{2 g R}{1+\frac{m}{M}}}$
$; X_{M}=-\left(\frac{m R}{M+m}\right)$
Q. 7 (ABC)
$u^{\prime}=\alpha u, \alpha=$ constant

w. r. t plane

$\mathrm{F}_{\text {trailing }}=2 \rho \mathrm{~A}\left(\mathrm{u}^{\prime}-\mathrm{v}\right)^{2}$
$F_{\text {leading }}-F_{\text {trailling }}=2 \rho A\left(4 u^{\prime} v\right)=8 \rho A u^{\prime} v$
Pressure difference

$$
=\frac{\mathrm{F}_{\text {leading }}-\mathrm{F}_{\text {trailing }}}{\text { Area }}=8 \rho u^{\prime} \mathrm{v}=8 \rho \alpha \mathrm{uv}
$$

Net force on plate

$$
\mathrm{F}_{\mathrm{net}}=\mathrm{F}-8 \rho \mathrm{~A} \alpha \mathrm{uv}=\frac{\mathrm{mdv}}{\mathrm{dt}}
$$

After long time v will be sufficient so $F=8 \rho A \alpha u v$ After that $\mathrm{v}=$ constant, i.e. plate will achieve terminal velocity.
Q. 8 (D)

$$
\cos \left(\frac{\pi}{\mathrm{n}}\right)=\frac{\mathrm{h}}{\mathrm{R}}
$$

$$
\Delta=\mathrm{R}-\mathrm{h}=\frac{\mathrm{h}}{\cos \left(\frac{\pi}{\mathrm{n}}\right)}-\mathrm{h}
$$

$$
=\mathrm{h}\left[\frac{1}{\cos \left(\frac{\pi}{\mathrm{n}}\right)-1}\right]
$$

Q. 9 [6.30]

$\mathrm{J}=1 \longrightarrow$	$\mathrm{m}=0.4$

$v=v_{0} e^{-t / \tau}$
$\mathrm{v}_{0}=\frac{\mathrm{J}}{\mathrm{m}}=2.5 \mathrm{~m} / \mathrm{s}$
$v=v_{0} e^{-t / \tau}$
$\frac{\mathrm{dx}}{\mathrm{dt}}=\mathrm{v}_{0} \mathrm{e}^{-\mathrm{t} / \tau}$
$\int_{0}^{x} d x=v_{0} \int_{0}^{\tau} e^{-t / \tau} d t \quad \int e^{-x} d x=\frac{e^{-x}}{-1}$
$x=v_{0}\left[\frac{e^{-t / \tau}}{-\frac{1}{\tau}}\right]_{0}^{\tau}$
$\mathrm{x}=2.5(-4)\left(\mathrm{e}^{-1}-\mathrm{e}^{0}\right)$
$\mathrm{x}=25(-4)(0.37-1)$
$x=6.30$
Q. 10 (B,C)

(1) average rate of collision $=\frac{2 \mathrm{~L}}{\mathrm{v}}$
(2) speed of particle after collision $=2 \mathrm{~V}+\mathrm{v}_{0}$ change in speed $=\left(2 \mathrm{~V}+\mathrm{v}_{0}\right)-\mathrm{v}_{0}$
After each collision $=2 \mathrm{~V}$
no. of collision per unit time $($ frequency $)=\frac{\mathrm{v}}{2 \mathrm{~L}}$
change in speed in dt time $=2 \mathrm{~V} \times$ number of collision in dt time
$\Rightarrow \mathrm{dv}=2 \mathrm{~V}\left(\frac{\mathrm{v}}{2 \mathrm{~L}}\right) \cdot \frac{\mathrm{dL}}{\mathrm{V}}$
$\mathrm{dv}=\frac{\mathrm{vdL}}{\mathrm{L}}$
Now, $\mathrm{dv}=-\frac{\mathrm{vdL}}{\mathrm{L}}\{$ as L decrease $\}$
$\int_{v_{0}}^{v} \frac{d v}{v}=-\int_{L_{0}}^{L_{0} / 2} \frac{d L}{L}$
$\Rightarrow[\operatorname{Inv}]_{\mathrm{v}_{0}}^{v}=-[\operatorname{InL}]_{\mathrm{L}}^{\mathrm{L}_{\mathrm{L}} / 2}$

$$
\begin{aligned}
& \Rightarrow \mathrm{v}=2 \mathrm{v}_{0} \\
& \Rightarrow \mathrm{KE}_{\mathrm{L}_{0}}=\frac{1}{2} \mathrm{mv}_{0}^{2} \\
& \frac{\mathrm{KE}_{\mathrm{L}_{0} / 2}}{\mathrm{KE}_{0}}=4
\end{aligned}
$$

$$
\mathrm{KE}_{\mathrm{L}_{0} / 2}=\frac{1}{2} \mathrm{~m}\left(2 \mathrm{v}_{0}\right)^{2}
$$

or
(dt) $\left(\frac{\mathrm{v}}{2 \mathrm{x}}\right) \frac{2 \mathrm{mv}}{\mathrm{dt}}=\mathrm{F}$

$\mathrm{F}=\frac{\mathrm{mv}}{\mathrm{z}} \mathrm{x}$
$-m v \frac{d v}{v}=\frac{m v^{2}}{x}$
$-\frac{\mathrm{dv}}{\mathrm{v}}=\frac{\mathrm{dx}}{\mathrm{x}}$
$\ln \frac{\mathrm{v}_{2}}{\mathrm{v}_{1}}=\operatorname{In} \frac{\mathrm{x}_{1}}{\mathrm{x}_{2}}$
$\mathrm{vx}=$ constant \Rightarrow on decreasing lenth to half K.E. becomes $1 / 4$

$$
v d x+x d v=0
$$

Question Stem for Question Nos. 11 and 12

Q. $11 \quad[0.50]$

Q. 12 [7.50]

Range $\mathrm{R}=\frac{2 \mathrm{u}_{\mathrm{x}} \mathrm{u}_{\mathrm{y}}}{\mathrm{g}}=\frac{2 \times 5 \times 5}{10}=5 \mathrm{~m}$
Time of flight $\mathrm{T}=\frac{2 \mathrm{u}_{\mathrm{y}}}{\mathrm{g}}=\frac{2 \times 5}{10}=1 \mathrm{sec}$

\therefore Time of motion of one part falling vertically
downwards is $=0.5 \mathrm{sec}=\frac{\mathrm{T}}{2}$
\Rightarrow Time of motion of another part, $\mathrm{t}=\frac{\mathrm{T}}{2}=0.5 \mathrm{sec}$
From momentum conservation $\Rightarrow P_{i}=P_{f}$
$2 \mathrm{~m} \times 5=\mathrm{m} \times \mathrm{v}$
$\mathrm{v}=10 \mathrm{~m} / \mathrm{s}$
Displacement of other part in 0.5 sec in horizontal
direction $=v \frac{T}{2}$
$=10 \times 0.5=5 \mathrm{~m}=\mathrm{R}$
\therefore Total distance of second part from point 'O' is,
$x=\frac{3 R}{2}=3 \times \frac{5}{2}$
$\mathrm{x}=7.5 \mathrm{~m}$
$\Rightarrow \mathrm{t}=0.5 \mathrm{sec}$

Rotational Motion

EXERCISES

ELEMENTARY

Q. 1 (2)
$\theta=\omega t$

$$
\theta=\frac{27 \times 3000}{60} \times 1
$$

Q. 2

Q. 3
Q. 4
Q. 5
Q. 6 (1)
$\mathrm{v}=\omega \mathrm{r}$
r is perpendicular distance of particle from rotational axis so correct option (1).

$\mathrm{v}=\omega \mathrm{r} \mathrm{r}$ is perpendicular distance of particle from rotational axis so correct option (1).
$\overrightarrow{\mathrm{v}}=\vec{\omega} \times \overrightarrow{\mathrm{r}}$
from above we get $\omega=\frac{\mathrm{v}}{\mathrm{r}}$ but $\omega=\frac{\mathrm{d} \theta}{\mathrm{dt}}$ is not depend on distance (r) from axis of rotation.
Q. 8

As disc is lying in the $x-z$ plane, so applying perpendicular axis theorem :-

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{x}}+\mathrm{I}_{\mathrm{z}}=\mathrm{I}_{\mathrm{y}} \\
& 30+\mathrm{I}_{\mathrm{z}}=40 \\
\Rightarrow & \mathrm{I}_{\mathrm{z}}=40-30=10 \mathrm{~kg} \mathrm{~m}^{2}
\end{aligned}
$$

Q. 9
 (2)

mr^{2}
Q. 10
Q. 11 (1)

Q. 12 (3)

Given, $I_{\text {solid sphere }}=I_{\text {hallow sphere }}$
$\Rightarrow \frac{2}{5} \mathrm{Mr}_{1}^{2}=\frac{2}{3} \mathrm{Mr}_{2}^{2}$
$\Rightarrow \frac{\mathrm{r}_{1}^{2}}{\mathrm{r}_{2}^{2}}=\frac{5}{3}$
$\Rightarrow \frac{\mathrm{r}_{1}}{\mathrm{r}_{2}}=\sqrt{5}: \sqrt{3}$
Q. 13 (3)

$$
\mathrm{I}=\mathrm{I}_{\mathrm{A}}+\mathrm{I}_{\mathrm{B}}+\mathrm{I}_{\mathrm{C}}
$$

Q. 18 (1)

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{A}}= \frac{2}{5} \mathrm{MR}^{2} \\
& \mathrm{I}_{\mathrm{B}}=\mathrm{I}_{\mathrm{C}}=\frac{2}{5} \mathrm{MR}^{2}+\mathrm{MR}^{2}=\frac{7}{5} \mathrm{MR}^{2} \\
& \Rightarrow \quad \mathrm{I}=\frac{2}{5} \mathrm{MR}^{2}+\frac{7}{5} \mathrm{MR}^{2}+\frac{7}{3} \mathrm{MR}^{2} \\
& \mathrm{I}=\frac{16}{5} \mathrm{MR}^{2}
\end{aligned}
$$

Q. 14 (2)

$$
\begin{aligned}
& \mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}+\mathrm{I}_{3} \\
& =\frac{\mathrm{ML}^{2}}{3}+\frac{\mathrm{ML}^{2}}{3}+0=\frac{2}{3} \mathrm{ML}^{2}
\end{aligned}
$$

Q. 15 (1)

given, $\omega_{0}=20 \mathrm{rad} / \mathrm{sec}$

$$
\omega=0
$$

$$
\mathrm{I}=50 \mathrm{~kg}-\mathrm{m}^{2}
$$

$$
\mathrm{t}=10 \mathrm{sec}
$$

$$
\propto=\frac{\omega-\omega_{0}}{\mathrm{t}}=\frac{0-20}{10}=-2 \mathrm{rad} / \mathrm{sec}^{2}
$$

and $\tau=\mathrm{I} \propto=50 \times 2=100 \mathrm{~kg}-\mathrm{m}^{2} / \mathrm{s}^{2}$

$$
=100 \mathrm{~N}-\mathrm{m}
$$

Q. 16 (4)

$$
\text { Given ; }\left[\tau=2 \mathrm{~N} . \mathrm{m} ., \alpha=2 \mathrm{rad} / \mathrm{sec}^{2}, \mathrm{k}=2 \mathrm{~m}\right]
$$

$$
\begin{aligned}
& \mathrm{I}=\frac{2}{2}=1 \mathrm{~kg} \cdot \mathrm{~m}^{2} \\
& \mathrm{I}=\mathrm{MK}^{2}
\end{aligned}
$$

$$
\begin{equation*}
\mathrm{I}=\mathrm{m} \cdot 2^{2} ; \mathrm{m}=\frac{1}{4} \cdot \mathrm{Kg} \tag{Q. 17}
\end{equation*}
$$

$\mathrm{z}=0, \frac{\mathrm{dL}}{\mathrm{dt}}, \mathrm{L}_{\mathrm{i}}=\mathrm{L}_{\mathrm{f}}$
Q. 23 (2)

Initial

Applying conservation of angular momentum :-

$$
\begin{aligned}
& \mathrm{I}_{1} \omega_{1}=\mathrm{I}_{2} \omega_{2} \\
\Rightarrow & \mathrm{I}_{1} \times \frac{2 \pi}{\mathrm{~T}_{1}}=\mathrm{I}_{2} \omega_{2} \\
\Rightarrow & 100 \times \frac{2 \pi}{10}=\left[100+50 \times(2)^{2}\right] \times \omega_{2}
\end{aligned}
$$

on solving, $\omega_{2}=\frac{2 \pi}{30} \mathrm{rad} / \mathrm{sec}$

Q. 19 (3)

From

$$
\begin{aligned}
& \mathrm{L}=\text { constant } \\
& \mathrm{L}=\mathrm{I} \omega
\end{aligned}
$$

Because $\tau_{\text {ext }}=0$
Due to drop the wax on disc moment of inertia of its will be increase so will be decrease.
Q. $20 \quad$ (2)
$\tau_{\text {ext }}=0$, So $L=I \omega=$ constant when girl moves from edge towards centre I will decrease, and ' ω ' will increase.
Q. 21 (2)

$$
\mathrm{f}=\frac{\frac{1}{2} \mathrm{I} \omega^{2}}{\frac{1}{2} \mathrm{I} \omega^{2}+\frac{1}{2} \mathrm{mv}^{2}}
$$

where $\mathrm{v}=\omega$ and $\mathrm{I}=\mathrm{I}=\frac{2}{5} \mathrm{mR}^{2}$
Q. 22 (3)

Because sphare has maximum translational lurchi energy first decrease in Potential energy.

Acceleration of a purely rolling object on an inclined plane is :-

$$
a=\frac{g \sin \theta}{\left(1+\frac{K^{2}}{R^{2}}\right)}
$$

for spherical shell, $\quad \frac{\mathrm{K}^{2}}{\mathrm{R}^{2}}=\frac{2}{3}$
for solid cylinder, $\quad \frac{\mathrm{K}^{2}}{\mathrm{R}^{2}}=\frac{1}{2}$
so, $\frac{a_{\text {shell }}}{a_{\text {cylinder }}}=\frac{\frac{g \sin \theta}{\left(1+\frac{2}{3}\right)}}{\frac{g \sin \theta}{(1)}}=\frac{9}{10}$

$$
\overline{\left(1+\frac{1}{2}\right)}
$$

Q. 24 (1)

Fraction $=\frac{\mathrm{K}_{\text {Rotation }}}{\mathrm{K}_{\text {Total }}}=\frac{\frac{\mathrm{K}^{2}}{\mathrm{R}^{2}}}{1+\frac{\mathrm{K}^{2}}{\mathrm{R}^{2}}}$

For disc, $\frac{\mathrm{K}^{2}}{\mathrm{R}^{2}}=\frac{1}{2}$,
so, fraction $=\frac{\frac{1}{2}}{1+\frac{1}{2}}=1: 3$

JEE-MAIN

OBJECTIVE QUESTIONS

Q. 1 (2)
$\omega_{0}=3000 \mathrm{rad} / \mathrm{min}$
$\omega_{0}=\frac{3000}{60} \mathrm{rad} / \mathrm{sec}=(50 \mathrm{rad} / \mathrm{sec})$
$\mathrm{t}=10 \mathrm{sec}$
$\omega_{\mathrm{f}}=0$
$\omega_{\mathrm{f}}=\omega_{0}+\alpha \mathrm{t}$
$\theta=50-\alpha$ (10)
$\alpha=5 \mathrm{rad} / \mathrm{sec}^{2}$
$\theta=\omega_{\mathrm{o}} \mathrm{t}+\frac{1}{2} \alpha \mathrm{t}^{2}$
$\theta=(50)(10)+\frac{1}{2}(-10)(10)^{2}$
$\theta=500-250=250 \mathrm{rad}$
Q. 2
(3)
$\mathrm{V}=\omega \mathrm{R}$
$\mathrm{V}=10 \times 0.2=2 \mathrm{~m} / \mathrm{sec}$.
Q. 3 (3)
$\omega=\mathrm{V}_{\perp} / \mathrm{r}$
$\omega=3 \cos \theta / \mathrm{r}$
$\omega=\frac{3}{\mathrm{r}} \times \frac{8}{\mathrm{r}}=\frac{24}{\mathrm{r}^{2}}$
In $\triangle \mathrm{OAB}$

$\mathrm{r}^{2}=(15)^{2}+(8)^{2}=289$
$\omega=\frac{24}{289} \mathrm{rad} / \mathrm{s}$
Q. 4 (3)
$\mathrm{m}_{\mathrm{A}}=\left(\sigma . \pi \mathrm{r}^{2} . \mathrm{t}\right)$
$\mathrm{m}_{\mathrm{B}}=\sigma . \pi(2 \mathrm{r})^{2}(\mathrm{t} / 2)=\left(\sigma 2 \pi \rho^{2} \mathrm{t}\right)$
$\mathrm{m}_{\mathrm{B}}>\mathrm{m}_{\mathrm{A}}$
$R_{B}>R_{A}$
so, $\mathrm{I}_{\mathrm{B}}>\mathrm{I}_{\mathrm{A}}$
Q. 5
(1)

$\mathrm{I}=\int \mathrm{dmr}{ }^{2}$
$\mathrm{I}=\mathrm{r}^{2} \int \mathrm{dm}=\mathrm{r}^{2} \mathrm{~m}=\mathrm{mr}^{2}$
Q. 6 (1)
$\sigma_{\mathrm{B}}>\sigma_{\mathrm{A}}$
$\mathrm{I}_{\mathrm{B}}>\mathrm{I}_{\mathrm{A}}$
so, If the axes are parallel $\mathrm{I}_{\mathrm{A}}<\mathrm{I}_{\mathrm{B}}$
Q. 7 (3)
$\mathrm{I}_{2}=\mathrm{I}_{1}+\mathrm{Md}^{2}$ Then $\mathrm{I}_{2}>\mathrm{I}_{1}$
Q. 8 (4)

Moment of inertia of the elliptical disc should be less than that of a circular disc having radius equal to the major axis of the elliptical disc.
Hence (4)
Q. 9 (3)

$\mathrm{I}_{0}=\mathrm{I}_{1}+\mathrm{I}_{2}$
$I_{0}=\frac{(\mathrm{m} / 2)\left(\frac{\ell}{2}\right)^{2}}{3}+\frac{(\mathrm{m} / 2)\left(\frac{\ell}{2}\right)^{2}}{3}=\frac{\mathrm{m} \ell^{2}}{12}$

Q. 10 (3)

$\mathrm{I}_{\mathrm{x}}+\mathrm{I}_{\mathrm{y}}=\mathrm{I}_{\mathrm{z}}$
$2 \mathrm{I}_{\mathrm{x}}=\mathrm{I}_{\mathrm{z}}$
$\therefore \quad I_{I}=2 \times 200=400 \mathrm{gm} \mathrm{cm}^{2}$.

Q. 11 (4)

Moment of inertia of a body depends upon mass and distribution of mass about the axis.

Q. 12 (2)

Moment of inertia about
diameter of sphere $I=\frac{2}{5} \mathrm{mr}^{2}$
Moment of inertia about tangent at their common point $I_{1}=\left(\frac{2}{5} \mathrm{mr}^{2}+\mathrm{mr}^{2}\right) \times 2=\frac{14}{5} \mathrm{mr}^{2} \mathrm{I}_{1}=7 \mathrm{I}$

Q. 13 (4)

Moment of inertia of disc about diameter $\mathrm{I}=\frac{\mathrm{mr}^{2}}{4}=2$,
$\mathrm{mr}^{2}=8$

Moment of inertia about the axis through a point on rim.
$I_{1}=\frac{m r^{2}}{4}+m r^{2}=10$

Q. 14 (1)

Moment of inertia of solid sphere $I_{1}=\frac{2}{5} \mathrm{mr}_{1}^{2}$
Moment of inertia of hollowsphere $\mathrm{I}_{2}=\frac{2}{3} \mathrm{mr}_{2}^{2}$
$\frac{2}{\mathrm{~m}} \mathrm{mr}_{1}^{2}=\frac{2}{3} \mathrm{mr}_{2}^{2} \Rightarrow \frac{\mathrm{r}_{1}}{\mathrm{r}_{2}}=\sqrt{\frac{5}{3}}$

Q. 15 (1)

M inertia about yy' axis are

$$
\begin{aligned}
& \quad \mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}+\mathrm{I}_{3}=2 \mathrm{I}_{1}+\mathrm{I}_{3}\left(\because \mathrm{I}_{1}=\mathrm{I}_{2}\right) \\
& \frac{\mathrm{MR}^{2}}{2}+2\left(\frac{\mathrm{MR}^{2}}{2}+\mathrm{MR}^{2}\right)
\end{aligned}
$$

$\left[\mathrm{I}=\left(\frac{\mathrm{MR}^{2}}{2}+\mathrm{MR}^{2}\right)\right]$ applying parallel axis
theorem $=7 / 2 \mathrm{MR}^{2}=7 / 2 \mathrm{PQ}^{2}$.

Q. 16 (4)

(1) $\frac{\mathrm{Ma}^{2}}{2}$ (disc)

(2) $\mathrm{Ma}^{2(\text { Ring })}$
(3) $\frac{2}{3} \mathrm{Ma}^{2 \text { (square lamina) }}$
(4) 4 Rods forming a square of side 2 a .

$$
\begin{aligned}
& \therefore 4\left(\frac{\mathrm{~m}}{4} \frac{(2 \mathrm{a})^{2}}{12}+\frac{\mathrm{m}}{4} \cdot \mathrm{a}^{2}\right) \\
& =\frac{\mathrm{ma}^{2}}{3}+\mathrm{ma}^{2}=\frac{4 \mathrm{ma}^{2}}{3}
\end{aligned}
$$

Q. 17 (2)

$\mathrm{I}=\frac{\mathrm{MR}^{2}}{2}$
(pasing through 0)
Q. 18 (4)
M.O.I. about C.O.M. is Minimum
$\mathrm{I}=\mathrm{I}_{\mathrm{CM} .}+\mathrm{Mx}_{0}{ }^{2}$
$\mathrm{I}=2 \mathrm{x}^{2}-12 \mathrm{x}+27$

$$
\begin{aligned}
& \therefore \frac{\mathrm{dI}}{\mathrm{dx}}=4 \mathrm{x}-12=0 \\
& \Rightarrow \mathrm{x}=3
\end{aligned}
$$

Q. 19 (2)
$\tau=\mathrm{I} \alpha=\frac{\mathrm{mr}^{2}}{2} \times \alpha$
$\alpha=0.25 \mathrm{rad} / \mathrm{sec}^{2}$
Q. 20 (2)
$\tau=\mathrm{I} \alpha$
$\tau=$ constant $\Rightarrow \omega=$ increases
Q. 21 (4)
$\omega=\omega_{0}+\alpha t$
$100=10+\alpha(15) \Rightarrow \alpha=6 \mathrm{rad} / \mathrm{sec}^{2}$
$\tau=\mathrm{I} \alpha \Rightarrow 60 \mathrm{Nm}$
Q. 22 (4)
$\tau=\mathrm{I} \alpha$
$2=\mathrm{I} \times 2 \Rightarrow \mathrm{I}=1 \mathrm{kgm}^{2}$
$\mathrm{I}=\mathrm{MR}^{2}$
$1=\mathrm{M}(2)^{2}$
$\mathrm{M}=\frac{1}{4} \mathrm{~kg}$
Q. 23 (1)

$$
\tau=\mathrm{I} \alpha=\left(\mathrm{mr}^{2}\right) \alpha
$$

Now, $\tau_{1}=(2 \mathrm{~m}) \frac{\mathrm{r}^{2}}{4} \times \alpha=\frac{\mathrm{mr}^{2}}{2} \times \alpha \Rightarrow \tau_{1}=\frac{\tau}{2}$
Q. 24 (1)
$\tau=\mathrm{I} \alpha$
$\tau_{\mathrm{A}}=\tau_{\mathrm{B}}$
$\mathrm{I}_{\mathrm{A}} \alpha_{\mathrm{A}}=\mathrm{I}_{\mathrm{B}} \alpha_{\mathrm{B}}$
$\mathrm{I}_{\mathrm{A}}<\mathrm{I}_{\mathrm{B}}$
$\alpha_{\mathrm{A}}>\alpha_{\mathrm{B}}$
$\omega_{\mathrm{A}}>\omega_{\mathrm{B}}$
Q. 25 (1)
$\overrightarrow{F_{1}}=2 i+3 j+4 k$
$\vec{F}_{2}=-2 \mathrm{i}-3 \mathrm{j}-4 \mathrm{k}$
Net force $\overrightarrow{\mathrm{F}}_{\text {net }}=\overrightarrow{\mathrm{F}}_{1}+\overrightarrow{\mathrm{F}}_{2}=0$ the body is in translational equilibrium.

$$
\begin{aligned}
& \overrightarrow{r_{1}}=3 \mathrm{i}+3 \mathrm{~J}+4 \mathrm{k} \quad \overrightarrow{r_{2}}=\mathrm{i} \\
& \vec{\tau}_{2}=\overrightarrow{r_{1}} \times \overrightarrow{\mathrm{F}_{1}} \\
&=(3 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}) \times(2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}) \\
& \overrightarrow{\tau_{1}}=9 \hat{\mathrm{k}}-12 \hat{\mathrm{j}}-6 \hat{\mathrm{j}}+12 \hat{\mathrm{i}}+8 \hat{\mathrm{j}}-12 \hat{\mathrm{i}} \\
& \overrightarrow{\tau_{1}}=-4 \hat{\mathrm{j}}+3 \hat{\mathrm{k}} \\
& \vec{\tau}_{2}=\overrightarrow{\mathrm{r}_{2}} \times \overrightarrow{\mathrm{F}_{2}}=(\hat{\mathrm{i}}) \times(-2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}-4 \hat{\mathrm{k}}) \\
&=-3 \hat{\mathrm{k}}+4 \hat{\mathrm{j}}
\end{aligned}
$$

SW

$$
\left(\vec{\tau}_{1}+\vec{\tau}_{2}=-4 \hat{\mathrm{i}}+3 \hat{\mathrm{k}}-3 \hat{\mathrm{k}}+4 \hat{\mathrm{j}}=0\right)
$$

body in rotational equilibrium
Q. 26 (3)

$$
\begin{aligned}
\mathrm{F} & =4 \hat{\mathrm{i}}-10 \hat{\mathrm{j}} \\
\overrightarrow{\mathrm{r}} & =(-5 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}) \\
\tau & =\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{F}} \\
& =(-5 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}) \times(4 \hat{\mathrm{i}}-10 \hat{\mathrm{j}}) \\
& =50 \hat{\mathrm{k}}+12 \hat{\mathrm{k}}=62 \hat{\mathrm{k}}
\end{aligned}
$$

Q. 27 (3)
$\vec{F}=2 \hat{i}+3 \hat{j}-\hat{k}$ at point $(2,-3,1)$
torque about point $(0,0,2)$

$$
\begin{aligned}
& \vec{r}=(2 \hat{i}-3 \hat{j}+\hat{k})-2 \hat{k} \\
& \vec{\tau}=\vec{r} \times \vec{F}=(2 \hat{i}-3 \hat{j}-\hat{k}) \times(2 \hat{i}+3 \hat{j}-\hat{k}) \\
& \vec{\tau}=(6 \hat{i}+12 \hat{k}) \\
&|\vec{\tau}|=(6 \sqrt{5})
\end{aligned}
$$

Q. 28 (3)

torque of a couple is always remains constant about any point
Q. 29 (2)

Torque about O
$\mathrm{F} \times 40+\mathrm{F} \times 80-(\mathrm{F} \times 20+\mathrm{F} \times 60)$
In clockwise direction

$$
=F \times 40
$$

Q. 30 (3)
$\mathrm{N}_{1}=\mu \mathrm{N}_{2}$,

$$
\begin{aligned}
& \mu \mathrm{N}_{1}+\mathrm{N}_{2}=\mathrm{mg}, \tau_{\mathrm{A}}=\mathrm{o} \Rightarrow \\
& 3 \mathrm{~N}_{2}-4 \mathrm{~N}_{1}-\frac{3}{2} \mathrm{mg}=\mathrm{o}
\end{aligned}
$$

Hence $\mu=\frac{1}{3}$ Ans.

Aliter

Using force balance
$\mathrm{f}_{1}=-\mu \mathrm{N}_{1}$
$\mathrm{N}_{1}+\mathrm{f}_{2}=\mathrm{mg}$

- (1)

$$
\mathrm{N}_{2}=\mathrm{f}_{1}
$$

$\mathrm{f}_{2}=\mu \mathrm{N}_{2}$
$\mathrm{N}_{2}=\mu \mathrm{N}_{1}$
-(2)
Using aq (1)
$\mathrm{N}_{1}+\mu \mathrm{N}_{2}=\mathrm{mg}$
$\mathrm{N}_{1}+\mu \mathrm{N}_{1}=\mathrm{mg}$
$\mathrm{N}_{1}+\left(\frac{\mathrm{mg}}{1+\mu^{2}}\right)$
torque about point $B \Rightarrow \tau_{B}=0$ For rotational equilibrium
$\mathrm{f}_{1} \times 4+\mathrm{mg}\left(5 / 2 \cos 53^{\circ}\right)=3 \mathrm{~N}_{1}$
$4 \mu \mathrm{~N}_{1}+\frac{3 \mathrm{mg}}{2}=3 \mathrm{~N}_{1}$
$\frac{3 m g}{2}=(3-4 \mu) \mathrm{N}_{1}$
$\frac{3 m g}{2}=(3-4 \mu)\left(\frac{m g}{1+\mu^{2}}\right)$
$\frac{3}{2}=\left(\frac{3-4 \mu}{1+\mu^{2}}\right)$
$3+3 \mu^{2}=6-8 \mu$
$3 \mu^{2}+8 \mu-3=0$

$$
\begin{aligned}
& 3 \mu^{2}+9 \mu-\mu-3=0 \\
& 3 \mu(\mu+3)-1(\mu+3) \\
& \Rightarrow(\mu=1 / 3)
\end{aligned}
$$

Q. 31 (2)

As shown in FBD \rightarrow Equation in verticle direction $\mathrm{N}_{\mathrm{A}}+\mathrm{N}_{\mathrm{B}}=\mathrm{mg}$
Taking moments about ' A '

$$
\begin{aligned}
& \mathrm{mg} \cdot \mathrm{x}=\mathrm{d} \cdot \mathrm{~N}_{\mathrm{B}} \\
& \mathrm{~N}_{\mathrm{B}}=\frac{\mathrm{mg} \cdot \mathrm{x}}{\mathrm{~d}}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{N}_{\mathrm{A}}=\mathrm{mg}-\mathrm{N}_{\mathrm{B}} \\
& \mathrm{~N}_{\mathrm{A}}=\mathrm{mg}-\frac{\mathrm{mg} \mathrm{x}}{\mathrm{~d}}=\mathrm{mg}\left(\frac{\mathrm{~d}-\mathrm{x}}{\mathrm{~d}}\right) \cdot \mathrm{w}\left(1-\frac{\mathrm{x}}{\mathrm{~d}}\right)
\end{aligned}
$$

Q. 32 (1)

weight of object $=w$
$\mathrm{w}(\ell-\mathrm{x})=\mathrm{w}_{1} \mathrm{x}$
...........(i)
(i)

If weight is kept in another pan then :
$\mathrm{w}_{2}(\ell-\mathrm{x})=\mathrm{wx}$
...........(ii)
By (i) \& (ii)
$\frac{\mathrm{w}}{\mathrm{w}_{2}}=\frac{\mathrm{w}_{1}}{\mathrm{w}} \Rightarrow \mathrm{w}^{2}=\mathrm{w}_{1} \mathrm{w}_{2}$
$\mathrm{w}=\sqrt{\mathrm{w}_{1} \mathrm{w}_{2}}$.

Q. 33 (3)

Body is rotating uniformly so resultant force on particale is centripetal force which is horizontal and intercecting the axis of rotation.
Q. 34 (4)

$\mathrm{N}=\left(\mathrm{m} \omega^{2} \frac{\ell}{2}\right)$

Q. 35 (1)

Initial velocity of each point onthe rod is zero so angular velocity of rod is zero.
Torque about O
$\tau=I \alpha$
$20 \mathrm{~g}(0.8)=\frac{\mathrm{m} \ell^{2}}{3} \alpha \Rightarrow 20 \mathrm{~g}(0.8)=\frac{20(1.6)^{2}}{3} \alpha$
$\Rightarrow \frac{3 \mathrm{~g}}{3.2}=\alpha=$ angular acceleration

$$
\begin{gathered}
\operatorname{mg} \frac{\ell}{4}=\frac{1}{2} \cdot\left(\frac{7}{48} \mathrm{~m} \ell^{2}\right) \omega^{2} \\
{\left[\mathrm{I}_{\text {(about } \mathrm{O})}=\frac{\mathrm{m} \ell^{2}}{12}+\mathrm{m}\left(\frac{\ell}{4}\right)^{2}\right.} \\
\quad \mathrm{I}_{0}=\frac{7}{48} \mathrm{ml}^{2} \Rightarrow \omega=\sqrt{\frac{24 \mathrm{~g}}{7 \ell}} \text { Ans. }
\end{gathered}
$$

Q. 39 (4)

Torque about B

Q. 38 (3)

By energy conservation

Q. 37 (2)

using energy conservation

$$
\begin{aligned}
& \mathrm{mg} \frac{\ell}{2}=\frac{1}{2} \mathrm{I} \omega^{2} \\
& \mathrm{mg} \frac{\ell}{2}=\frac{1}{2} \cdot \frac{\mathrm{~m} \ell}{3} \omega^{2} \\
& \ell=1 \mathrm{~m} \omega=\sqrt{\frac{3 \mathrm{~g}}{\ell}} \\
& \mathrm{~V}_{\mathrm{A}}=\omega \ell=\sqrt{3 \mathrm{~g}}=(\sqrt{3 \mathrm{~g}})
\end{aligned}
$$

Q. 36 (3)

Beam is not at rotational equilibrium, so force exerted by the rod (beam) decrcase
$f_{r}=M g \sin \theta=\mu M g \cos \theta f_{r} \cdot \frac{a}{2}=N \cdot x=\tau_{N}$

$$
\mathrm{Mg} \frac{\mathrm{a}}{2} \sin \theta=\tau_{\mathrm{N}}
$$

Q. 44 (1)

For topling about edge xx^{\prime} \qquad
$\mathrm{F}_{\text {min. }} \frac{3 \mathrm{a}}{4}=\mathrm{mg} \frac{\mathrm{a}}{2}$
$\mathrm{F}_{\text {min. }}=\frac{2 \mathrm{mg}}{3}$.
Q. 45 (1)

To Balance torque N shifts Downwards

Q. 46 (2)

By work energy theorem

$$
\begin{aligned}
& \mathrm{my} \frac{\mathrm{~L}}{2}=\frac{1}{2} \frac{\mathrm{~mL}^{2}}{3} \omega^{2} \\
& \omega=\sqrt{\frac{3 \mathrm{~g}}{\mathrm{~L}}}
\end{aligned}
$$

Q. 47 (4)
$\frac{1}{2} \mathrm{I} \omega^{2}=1000$
$\omega=10 \mathrm{rad} / \mathrm{sec}$
$2 \pi \mathrm{f}=10 \Rightarrow \mathrm{f}=\frac{5}{\pi} \mathrm{rad} / \mathrm{sec}=\frac{300}{\pi} \mathrm{rad} / \mathrm{min}$

Q. $48 \quad$ (2)

$P=\vec{\tau} \cdot \vec{\omega} \Rightarrow P=\tau \omega$

Q. 49 (1)
Q. 50 (4)
Q. 51 (4)
Q. 52 (3)

$$
\tau \alpha \theta \Rightarrow \tau=c \theta
$$

$\mathrm{dw}=\tau \mathrm{d} \theta=\mathrm{c} \theta \mathrm{d} \theta$
$|\mathrm{dw}=| \mathrm{c} \theta \mathrm{d} \theta$
$\mathrm{w}=\frac{1}{2} \mathrm{c} \theta^{2}$
Q. 53 (3)

$$
\vec{\tau}=\frac{\overrightarrow{\mathrm{dL}}}{\mathrm{dt}}=\frac{4 \mathrm{~A}_{0}-\mathrm{A}_{0}}{4}=\left(\frac{3 \mathrm{~A}_{0}}{4}\right)
$$

Q. $54 \quad$ (2)

$\Rightarrow \mathrm{L}=(\mathrm{mvd})=$ constant
becouse $\mathrm{v}=$ const. and $\mathrm{d}=$ const.
Q. 55 (4)

$\mathrm{x}=\mathrm{v}_{0} \cos 45^{\circ} \times \mathrm{t}=\frac{\mathrm{v}_{0} \mathrm{t}}{\sqrt{2}}$
$\tau=\operatorname{mgx}=\frac{\operatorname{mgv}_{0} t}{\sqrt{2}}=\frac{\mathrm{dL}}{\mathrm{dt}}$
$\Rightarrow \mathrm{L}=\frac{\mathrm{mgv}_{0}}{\sqrt{2}} \int_{0}^{\mathrm{v}_{0} / \mathrm{g}} \mathrm{tdt}=\frac{\mathrm{mv}_{0}^{3}}{2 \sqrt{2} \mathrm{~g}}$
Q. 56 (4)
$\mathrm{L}=\mathrm{I} \omega$
$\omega^{\prime}=2 \omega$
$\frac{1}{2}\left(\frac{1}{2} \mathrm{I} \omega^{2}\right)=\frac{1}{2} \mathrm{I}^{\prime} \omega^{\prime 2}$
$\frac{\mathrm{I} \omega^{2}}{2}=\mathrm{I}^{\prime} 4 \omega^{2}$
$I^{\prime}=\left(\frac{I}{8}\right)$
$L^{\prime}=I^{\prime} \omega^{\prime}=\frac{\mathrm{I}}{8} 2 \omega=\frac{\mathrm{I} \omega}{4}=(\mathrm{L} / 4)$
Q. 57 (2)

No any external torque so $\mathrm{L}=$ constant;
$\mathrm{I}_{1} \omega_{1}=\mathrm{I}_{2} \omega_{2}$
$\left(\mathrm{MR}^{2} \omega\right)=\left(\mathrm{MR}^{2}+2 \mathrm{mR}^{2}\right) \omega_{2}$
$\Rightarrow \omega_{2}=\left(\frac{\mathrm{M} \omega}{\mathrm{M}+2 \mathrm{~m}}\right)$
Q. 58 (3)
external torque $\vec{\tau}_{\text {ext }}=0$
$\mathrm{I}_{1} \omega_{1}=\mathrm{I}_{2} \omega_{2}$
when he stretches his arms I
so $I_{1}<I_{2}$
then $\left(\omega_{1}>\omega_{2}\right)$
so, $(\mathrm{L}=$ constant $)$
Q. 59 (4)

Torque

Q. 60 (3)

$\frac{1}{2} \mathrm{I} \omega^{2}=10 \Rightarrow \frac{5}{2} \omega^{2}=10 \Rightarrow \omega=2 \mathrm{rad} / \mathrm{sec}$
Angular Momentum
$\mathrm{L}=\mathrm{I} \omega=5 \times 2=10$ joule-sec.
Q. 61 (2)
$\mathrm{I}_{1} \omega_{1}=\mathrm{I}_{2} \omega_{2}$
$\mathrm{MR}_{1}^{2} \omega_{1}=\mathrm{MR}_{2}^{2} \omega_{2}$
$\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}=\sqrt{\frac{\omega_{2}}{\omega_{1}}}=\frac{3}{1}$
Q. 62 (2)

Change in momentum $=2 \mathrm{mV} \cos \theta=\int$ F.dt
$\therefore \quad$ Change in angular momentum
$=\int F d . d t=2 \mathrm{mVd} \cos \theta$
Q. 63 (2)
$\mathrm{KE}=\frac{1}{2} \mathrm{I} \omega^{2}=\frac{1}{2} \times\left(\frac{\mu \mathrm{R}}{2}\right)^{2} \frac{\mathrm{v}^{2}}{\mathrm{R}^{2}}$
$\frac{1}{4} \mathrm{Mv}^{2}$
Total KE $=\frac{1}{2} \mathrm{I} \omega^{2}+\frac{1}{2} \mathrm{mv}^{2}$
$\frac{1}{4} \mathrm{Mv}^{2}+\frac{1}{2} \mathrm{~m} \mu^{2} \Rightarrow \frac{3}{4} \mathrm{mv}^{2}$
Ratio $=\frac{1}{3}$
Q. 64 (3)

For pure rolling $\omega R=u, v=\sqrt{u^{2}+(\omega R)^{2}}=(u \sqrt{2})$
Q. 65

When A point travels ℓ distance then B point 2ℓ so, 2ℓ length of string passes through the hand of the boy
Q. 66 (1)

$m g \sin \theta-f=m a$
$a=\left[\frac{m g \sin \theta-f}{m}\right]$
a is same for each body.
f. $\mathrm{R}=\mathrm{I} \alpha$
$\alpha=\frac{\mathrm{f} \cdot \mathrm{R}}{\mathrm{mk}^{2}}$
For solid sphere $k^{2}=\frac{2}{5} R^{2}$ is minimum there fore α is maximum hence, k.E. for solid sphere will be max at bottom.

Q. 67 (2)

$a=\left(\frac{g \sin \theta}{1+\frac{\mathrm{k}^{2}}{\mathrm{R}^{2}}}\right)$

For solid sphere $\Rightarrow \frac{\mathrm{k}^{2}}{\mathrm{R}^{2}}=\frac{2}{5}$

For hollow sphere $=\frac{2}{3} \mathrm{mR}^{2}=\mathrm{mk}^{2}$

$$
\frac{\mathrm{k}^{2}}{\mathrm{R}^{2}}=\frac{2}{3}
$$

so $\mathrm{k}_{\mathrm{s}}<\mathrm{k}_{\mathrm{H}}$
then $\mathrm{a}_{\mathrm{s}}>\mathrm{a}_{\mathrm{H}}$
(so speed of solid sphere is greater then hollow sphere)
Q. 68 (1)
$\mathrm{a}=(\mathrm{g} \tan \theta)$ so net force along the indined plane is zero so it will continue in pure rolling with constant angular velocity.

Q. 69 (4)

There is no relative motion between sphere and plank so friction force is zero then no any change in motion of sphere and plank.
Q. 70 (1)

Due to linear velocity body will move forward before pure rolling.
Q. 71 (1)

Disk $=\frac{1}{2} \mathrm{I} \omega^{3}+\frac{1}{2} \mathrm{mv}_{1}^{2}$
$=\frac{1}{2} \frac{\mathrm{MR}^{2}}{2} \frac{\mathrm{v}_{1}^{2}}{\mathrm{R}^{2}}+\frac{1}{2} \mathrm{mv}_{1}^{2}=\frac{3}{4} \mathrm{mv}_{1}^{2}$

$$
\begin{aligned}
& \text { Ring }=\frac{1}{2} \mathrm{I} \omega^{2}+\frac{1}{2} \mathrm{mv}_{2}^{2}=\frac{1}{2} \mathrm{mr}^{2} \times \frac{\mathrm{v}_{2}^{2}}{\mathrm{R}^{2}}+\frac{1}{2} \mathrm{mv}_{2}^{2}=\mathrm{mv}_{2}^{2} \\
& \frac{1}{4} \mathrm{mv}_{1}^{2}=\mathrm{mv}_{2}^{2} \\
& \frac{\mathrm{v}_{1}}{\mathrm{v}_{2}}=\left(\frac{4}{3}\right)^{1 / 2}
\end{aligned}
$$

Q. 72 (4)

$$
\begin{aligned}
& \because \mu=0 \\
& a=g \sin \theta, t=\sqrt{\frac{2 h}{g \sin \theta}}
\end{aligned}
$$

Q. 73 (3)

$R^{\prime}=4 R$
Q. 74 (3)

$\mathrm{mgh}=\frac{1}{2} \mathrm{Iw}^{2}+\frac{1}{2} \mathrm{mV}^{2}, \mathrm{I}_{\text {shell }}=\frac{2}{3} \mathrm{MR}^{2}$
$\mathrm{mgh}=\frac{1}{2} \times \frac{2}{3} \mathrm{MR}^{2} \cdot \frac{\mathrm{~V}^{2}}{\mathrm{R}^{2}}+\frac{1}{2} \mathrm{MV}^{2}$
$\mathrm{mgh}=\frac{1}{3} \mathrm{MV}^{2}+\frac{1}{2} \mathrm{mV}^{2}$
$\mathrm{mgh}=\frac{5}{6} \mathrm{mV}^{2} \Rightarrow \mathrm{~V}^{2}=\frac{6 \mathrm{gh}}{5}$
Q. 75 (1)
$\vec{F}=M a$

Smooth Surface

$$
\Rightarrow \quad \mathrm{a}=\frac{\mathrm{F}}{\mathrm{M}}
$$

For pure rolling
$\mathrm{a}=\alpha \mathrm{R}$
$\mathrm{F} \times \mathrm{R}=\mathrm{I} \alpha$
$\alpha=\frac{\mathrm{FR}}{\mathrm{I}}$
$\frac{F}{m}=\frac{F R \cdot R}{I}$
$\mathrm{I}=\mathrm{MR}^{2}$
MR^{2} is the moment of inertia of chin pipe.
Q. 76 (4)
Q. 77 (3)

Q. 78 (1)

α is conserved about 0
$\mathrm{I} \omega_{0}-\mathrm{mVR}=0 \Rightarrow \quad \mathrm{I} \omega_{0}=\mathrm{mVR}$
$\frac{M R^{2}}{2} \omega_{0}=m V_{0} R$
$\omega_{0}=\frac{2 \mathrm{~V}_{0}}{\mathrm{R}} \Rightarrow \frac{\mathrm{V}_{0}}{\omega_{0} \mathrm{R}}=\frac{1}{2}$
Q. 79 (4)

As the inclined plane is smooth, the sphere can never roll rather it will just slip down.
Hence, the angular momentum remains conserved about any point on a line parallel to the inclined plane and passing through the centre of the ball.

Q. 80 (2)

$\mathrm{J}=\mathrm{MV}_{\mathrm{COM}} \Rightarrow \mathrm{V}_{\mathrm{COM}}=\frac{\mathrm{J}}{\mathrm{M}}$
$\mathrm{J} \frac{\mathrm{L}}{2}=\frac{\mathrm{ML}^{2}}{12} \omega$
$\mathrm{V}=\left|\frac{\mathrm{J}}{\mathrm{M}}-\frac{6 \mathrm{~J}}{\mathrm{ML}} \frac{\mathrm{L}}{2}\right|$
$J=\frac{M V}{2}$

Q. 81 (4)

(a) M is instantaneous axis of Rotation (I.A.R.) (b)

Magnitude is same but direction is different
Q. 82 (3)

Q. 83 (1)

Moment of inertia of disc $=\frac{\mathrm{mr}^{2}}{2}=0.5 \mathrm{mr}^{2}$
Moment of inertia solid sphere $=\frac{2}{5} \mathrm{mr}^{2}$
Q. 84 (2)
M.I. $=\mathrm{mr}^{2}=4 \times 1^{2}=4 \mathrm{~kg} \mathrm{~m}^{2}$.
Q. 85 (4)
$\mathrm{P}=\tau \omega$
Q. 86 (4)
$\overrightarrow{\mathrm{L}}=\mathrm{m}(\stackrel{!}{\mathrm{r}} \times \stackrel{!}{\mathrm{V}})$
$=2 \times 2[(\hat{\mathrm{i}}+\hat{\mathrm{j}}) \times(\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}})]$
$=4(-\hat{\mathrm{k}}-\hat{\mathrm{j}}-\hat{\mathrm{k}}+\hat{\mathrm{i}})=4(\hat{\mathrm{i}}-\hat{\mathrm{j}}-2 \hat{\mathrm{k}})$
$\overrightarrow{\mathrm{L}}=$ Angular Momentum along z -axis is the compoent of angular momentum along z -axis.
i.e. $=-8 \mathrm{~kg}-\mathrm{m}^{2} / \mathrm{sec}$

JEE-ADVANCED

OBJECTIVE QUESTIONS

Q. 1 (D)

Given $\mathrm{a}_{\mathrm{A}}=2 \alpha=5 \mathrm{~m} / \mathrm{s}^{2}$
$\Rightarrow \alpha=5 / 2 \mathrm{rad} / \mathrm{s}^{2}$
$\Rightarrow \mathrm{a}_{\mathrm{B}}=1 .(\alpha)=5 / 2 \mathrm{~m} / \mathrm{s}^{2}$
Q. $2 \quad$ (B)

The given structure can be broken into 4 parts

For $\mathrm{AB} \quad \mathrm{I}=\mathrm{I}_{\mathrm{CM}}+\mathrm{m} \times \mathrm{d}^{2}=\frac{\mathrm{m} \ell^{2}}{12}+\frac{5 \mathrm{~m}}{4} \ell^{2}$;
$\mathrm{I}_{\mathrm{AB}}=\frac{4}{3} \mathrm{ml}^{2}$
For BO $\mathrm{I}=\frac{\mathrm{m} \ell^{2}}{3}$
\therefore For composite frame :(by symmetry)

$$
\left.\mathrm{I}=2\left[\mathrm{I}_{\mathrm{AB}}+\mathrm{I}_{\mathrm{OB}}\right]=2\left[\frac{4 \mathrm{~m} \ell^{2}}{3}+\frac{\mathrm{m} \ell^{2}}{3}\right]=\frac{10}{3} \mathrm{ml}^{2} .\right]
$$

(D)

Pearpendicular axis theorem

$$
\mathrm{I}_{2}=\mathrm{I}_{\mathrm{x}}+\mathrm{I}_{\mathrm{y}}=\frac{\mathrm{mr}^{2}}{2}
$$

from symmetry $I_{x}=I_{y}$
$\Rightarrow I_{x}=\frac{\mathrm{mr}^{2}}{4}$
Perallel axis theorem

$$
\mathrm{I}_{\mathrm{oo}^{\prime}}=\mathrm{I}_{\mathrm{x}}+\mathrm{mr}^{2}
$$

$=\frac{\mathrm{mr}^{2}}{4}+\mathrm{mr}^{2}=\frac{5}{4} \mathrm{mr}^{2}$

Q. 4 (B)

MI of the system w.r.t an axis \perp to plane \& passing through one corner
Q. 5

$=\frac{\mathrm{ML}^{2}}{3}+\frac{\mathrm{ML}^{2}}{3}+\left[\frac{\mathrm{ML}^{2}}{12}+\mathrm{M}\left(\frac{\sqrt{3} \mathrm{~L}}{2}\right)^{2}\right]$
$=\frac{2 \mathrm{ML}^{2}}{3}+\left[\frac{\mathrm{ML}^{2}}{12}+\frac{3 \mathrm{ML}^{2}}{4}\right]$
$=\frac{2 \mathrm{ML}^{2}}{3}+\frac{10 \mathrm{ML}^{2}}{12}=\frac{3 \mathrm{ML}^{2}}{3}=\frac{18 \mathrm{ML}^{2}}{12}$
$=\frac{3}{2} \mathrm{ML}^{2}$
Now $\frac{3}{2} \mathrm{ML}^{2}=3 \mathrm{k}^{2}$
$\mathrm{k}=\frac{\ell}{\sqrt{2}}$ [Ans.: $\frac{\ell}{\sqrt{2}}$]
(D)

$\mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}+\mathrm{I}_{3}$
$\mathrm{I}_{1}=\mathrm{I}_{2}=\frac{3}{2} \mathrm{mr}^{2}$
$\mathrm{I}_{3}=\frac{\mathrm{mr}^{2}}{2}$
$\therefore \quad \mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}+\mathrm{I}_{3}=\frac{7}{2} \mathrm{mr}^{2}$
Moment of inertia $=3 \mathrm{mk}^{2}$ where k is radius of gyration.
$3 \mathrm{mk}^{2}=\frac{7}{2} \mathrm{mr}^{2} \Rightarrow \mathrm{k}=\sqrt{\frac{7}{6}} \mathrm{r}$

Q. 6 (D)

Taking mass of plate $\mathrm{m}=\frac{\mathrm{M}}{6}$
Then MI of two plates through which the axis is
passing $=\frac{\mathrm{ma}^{2}}{6} \times 2=\frac{\mathrm{ma}^{2}}{3}$
M.I of 4 plates having symmetrical position from the axis
$=4 \times\left[\frac{\mathrm{ma}^{2}}{12}+\mathrm{m}\left(\frac{\mathrm{a}}{2}\right)^{2}\right]=4 \times\left[\frac{\mathrm{ma}^{2}}{3}\right]$

Total MI $=\frac{4 \mathrm{ma}^{2}}{3}+\frac{\mathrm{ma}^{2}}{3}=\frac{5 \mathrm{ma}^{2}}{3}$
using $\frac{M}{6}=m=M I=\frac{5 \mathrm{Ma}^{2}}{18}$

Q. 7 (D)

Taking cylindrical element of radius r and thickness dr
$\mathrm{dm}=\frac{\mathrm{M}}{\pi\left(\mathrm{R}_{2}^{2}-\mathrm{R}_{1}^{2}\right) \ell} \times(2 \pi \mathrm{r} \ell \mathrm{dr})$
$\mathrm{I}_{\mathrm{AB}}=\int \mathrm{dI} \mathrm{I}_{\mathrm{e} \ell}=\int \mathrm{dm} \mathrm{r}^{2}$
$=\int_{\mathrm{R}_{1}}^{\mathrm{R}_{2}} \frac{2 \mathrm{M}}{\left(\mathrm{R}_{2}^{2}-\mathrm{R}_{1}^{2}\right)} \cdot \mathrm{r}^{3} \mathrm{dr}=\frac{1}{2} \mathrm{M}\left(\mathrm{R}_{2}^{2}+\mathrm{R}_{1}^{2}\right)$
Using parallel axis theorem
$I_{X Y}=\frac{1}{2} M\left(R_{2}^{2}+R_{1}^{2}\right)+M R_{2}^{2}=\frac{M}{2}\left(3 R_{2}^{2}+R_{1}^{2}\right)$
Q. 8 (A)

By perpendicular axis theorem moment of inertia about any axis passing through centre and in the plane of plate will be I (by symmetry)
Q. 9 (B)

Cylinder $=\frac{\mathrm{MR}^{2}}{2}$, Square lamina $=\frac{\mathrm{MR}^{2}}{6}$,
Solid sphere $=\frac{2}{5} \mathrm{MR}^{2}$
Q. 10 (C)

$\mathrm{I}_{\mathrm{x}}=\frac{\mathrm{ML}^{2}}{12} ; \mathrm{I}_{\mathrm{y}}=\frac{\mathrm{ML}^{2}}{12}$
$\mathrm{I}_{\mathrm{x}}+\mathrm{I}_{\mathrm{y}}=\mathrm{I}_{\mathrm{z}}=\mathrm{I}_{1}+\mathrm{I}_{2}$
$\frac{2 \cdot \mathrm{M}^{2} \mathrm{~L}^{2}}{12}=2 \mathrm{I}_{1} \Rightarrow \mathrm{I}_{1}=\frac{\mathrm{ML}^{2}}{12}$
Q. 11 (C)

In case PQR r is larger.

Q. 12 (B)

$$
\begin{aligned}
& \mathrm{r}=\frac{\mathrm{L}}{\sqrt{2}} \cos 30^{\circ} \mathrm{I}_{1}+\mathrm{I}_{2}=\frac{\mathrm{ML}^{2}}{6} \\
& =\frac{\mathrm{L} \sqrt{3}}{2 \sqrt{2}} \Rightarrow \mathrm{I}_{1}=\frac{\mathrm{ML}^{2}}{12} \\
& \therefore \mathrm{I}^{\prime}=\frac{\mathrm{ML}^{2}}{12}+\frac{\mathrm{M} \cdot \mathrm{~L}^{2} \cdot 3}{8}=\frac{2 \mathrm{ML}^{2}+9 \mathrm{ML}^{2}}{24} \\
& \mathrm{I}^{\prime}=\frac{11 \mathrm{ML}^{2}}{24}
\end{aligned}
$$

The figure shows an isosceles triangular plate of mass M and base L . The angle at the apex is 90°. The apex lies at the origin and the base is parallel to X - axis.

Q. 13 (C)
$\vec{\tau}=\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathrm{F}}$
$=(-b \hat{i}-c \hat{k}) \times a \hat{j}$
$=(-b \hat{k}-c(-\hat{i}))$
$=-b \hat{k}+c \hat{i}$

Q. 14 (C)

$\tau_{\mathrm{A}}=0$

$\mathrm{T}_{1} \times \frac{3 \mathrm{~L}}{4}-\mathrm{mg} \frac{\mathrm{L}}{2}=0$
$\mathrm{T}_{1}=\frac{2 \mathrm{mg}}{3}$
$\mathrm{T}_{1}+\mathrm{T}_{2}=\mathrm{mg}$
$\mathrm{T}_{2}=\frac{\mathrm{mg}}{3}$ $\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}=\frac{2}{1}$ Ans.
Q. 15 (D)

In equilibrium, torques of forces mg and Mg about an axis passing through O balance each other.
mg. $\frac{\mathrm{L}}{2} \cos 30^{\circ}=\mathrm{Mg} \frac{\mathrm{L}}{2} \cos 60^{\circ}$
$\Rightarrow \frac{\mathrm{M}}{\mathrm{m}}=\sqrt{3}$
Q. 16 (C)

For rotational equilibrium

$\mathrm{N}_{1} \times \frac{\ell}{4}=\mathrm{N}_{2} \times \frac{\ell}{6}$
$\mathrm{N}_{1}: \mathrm{N}_{2}=4: 3$

Q. 17 (C)

Balancing torque about the centre of the rod:

$$
\mathrm{N}_{1} \cdot \frac{\ell}{4}-\mathrm{N}_{2} \cdot \frac{\ell}{4}=0 \Rightarrow \mathrm{~N}_{1}=\mathrm{N}_{2} .
$$

Q. 18 (C)

$\overrightarrow{\mathrm{F}}_{\text {net }}=(400-100) \hat{\mathrm{i}}+(200+200) \hat{\mathrm{j}}=300 \hat{\mathrm{i}}+400 \hat{\mathrm{j}}$
$\Rightarrow|\overrightarrow{\mathrm{F}}|=500 \mathrm{~N}$
Angle made by $\overrightarrow{\mathrm{F}}_{\text {net }}$ with the vertical is $\theta=\tan ^{-1}$ $\left(\frac{300}{400}\right)=37^{\circ}$
also $\tau=500 \mathrm{R}$ therefore point of application of the resultant force is at a distance R from the centre. Hence (C).

Q. 19 (B)

For the circular motion of com :

$\mathrm{mg}=\mathrm{m}\left(\frac{\mathrm{L}}{2}\right) \omega^{2} \Rightarrow \omega=\sqrt{\frac{2 \mathrm{~g}}{\mathrm{~L}}}$
Note : Since the reaction at the end is zero, the gravitational force will have to provide the required centripetal force.
Q. 20 (B)

Let α be the angular acceleration of rod and a be acceleration of block just after its release.
$\therefore \mathrm{mg}-\mathrm{T}=\mathrm{ma}$
$\mathrm{T} \ell-\mathrm{mg} \frac{\ell}{2}=\frac{\mathrm{m} \ell^{2}}{3} \alpha$
and $a=\ell \alpha$

Solving we get

$$
\mathrm{T}=\frac{5 \mathrm{mg}}{8} \text { and } \alpha=\frac{3 \mathrm{~g}}{8 \ell}
$$

Q. 21 (B)

$$
\begin{aligned}
& \mathrm{N}_{1}+\mathrm{N}_{2}=(\mathrm{M}+\mathrm{m}) \cdot \mathrm{g} \\
& \tau_{\mathrm{B}}=0 \\
& \mathrm{~N}_{1} \cdot 4=\mathrm{Mg} \times 2+\mathrm{m}(5-\mathrm{x})
\end{aligned}
$$

Q. 22 (B)

Net force $=0$
$\mathrm{T}+\mathrm{N}=\mathrm{Mg}$
....(1)
Net torque about $\mathrm{B}=0$
$\tau_{\mathrm{B}}=0$
$\mathrm{N} . \mathrm{L}=\mathrm{Mg} \cdot \frac{2}{3} \mathrm{~L}$,

$$
\mathrm{N}=\frac{2}{3} \mathrm{Mg}
$$

Q. 23 (A)

The tendency of rotating will be about the pont C . For minimum force, the torque of F about C has to be equal to the torque of mg about C .
$\therefore \quad \mathrm{F}\left(\mathrm{a} \frac{\sqrt{3}}{2}\right)=\mathrm{mg}\left(\frac{\mathrm{a}}{2}\right)$
$\Rightarrow \mathrm{F}=\frac{\mathrm{mg}}{\sqrt{3}}$ Ans.

Q. 24 (B)

For maximum a, normal reaction will shift to left most position.

for rotational equilibrium $\tau_{\mathrm{P}}==0$ [in frame of truck]

$$
\operatorname{ma} \frac{\ell}{2}=\mathrm{mg} \frac{\mathrm{~b}}{2} \quad \Rightarrow \mathrm{a}=\frac{\mathrm{gb}}{\ell}
$$

Q. 25 (B)
$\mathrm{f}_{\max }=\frac{1}{2} \mathrm{Mg}$

$\mathrm{f}=\mathrm{Mg} / 3$
Torque Balance
$\frac{M g}{3} \cdot \frac{a}{2}+\frac{M g}{3} \cdot \frac{a}{2}=N . x$
$\frac{\mathrm{Mga}}{3}=\operatorname{mgx} \Rightarrow \mathrm{x}=\frac{\mathrm{a}}{3}$

Q. 26 (A)

$\mathrm{f}_{\text {max }}=\mu \mathrm{N}$
....(1)
$\mathrm{f}=\mathrm{F}$
$\tau_{\mathrm{A}}=0$
F. $\frac{3 \mathrm{~b}}{4}=\mathrm{Mg} \cdot \mathrm{b} / 2$
$\mathrm{f}=\mathrm{F}=2 \mathrm{Mg} / 3$
$\therefore \quad \mathrm{f}>\mu \mathrm{N} \Rightarrow 2 \mathrm{Mg} / 3>\mu . \mathrm{Mg}$
$\mu>\frac{2}{3}$
Q. 27 (C)

For (rod + particle) system :
$\frac{1}{2}\left(\frac{\mathrm{~m} \ell^{2}}{3}\right)\left(\frac{\mathrm{v}^{2}}{\ell^{2}}\right)+\frac{1}{2} \mathrm{mv}^{2}=2 \mathrm{mg}\left(\frac{3 \ell}{2}\right)$
[Since, com will finally reach a height $2\left(\frac{3 \ell}{4}\right)$]
$\Rightarrow \mathrm{v}=\sqrt{4.5 \mathrm{~g} \ell}$
Q. 28 (A)

Increase in rotational K.E

$$
\Rightarrow 2 \mathrm{mg} \cdot \frac{\ell}{2}-\mathrm{mg} \cdot \frac{\ell}{2}
$$

$$
=\frac{1}{2} \mathrm{I} \cdot \omega^{2}=\frac{1}{2}\left(2 \mathrm{~m} \frac{\ell^{2}}{4}+\mathrm{m} \cdot \frac{\ell}{4}\right) \omega^{2}
$$

$$
\frac{\mathrm{mg} \ell}{2}=\frac{1}{2} \cdot \frac{3 \mathrm{~m} \ell^{2}}{4} \cdot \omega=\frac{3 \mathrm{~m} \ell^{2}}{8} \omega^{2}
$$

$$
\omega=\sqrt{\frac{4 \mathrm{~g}}{3 \ell}} \text { and } \mathrm{v}=\mathrm{r} \omega=\frac{\ell}{2} \sqrt{\frac{4 \mathrm{~g}}{3 \ell}}=\sqrt{\frac{\mathrm{g} \ell}{3 \ell}}
$$

[Ans.: (a) $\mathrm{V}=\sqrt{\mathrm{g} \ell / 3}, \omega=\sqrt{4 \mathrm{~g} / 3 \ell}$]
Q. 29 (C)
$\omega=\sqrt{\frac{3 g}{L}}$
By Energy Conservation
$\frac{1}{2} \frac{\mathrm{M}}{2 \times 3} \times\left(\frac{\mathrm{L}}{2}\right)^{2} \times \frac{3 \mathrm{~g}}{\mathrm{~L}}$
$=\frac{\mathrm{Mg}}{2} \frac{\mathrm{~L}}{4}(1-\cos \theta)$
$\frac{\mathrm{ML}^{2}}{4 \mathrm{~L}} \times \mathrm{g}=\frac{\mathrm{MgL}}{2}(1-\cos \theta)$
$\cos \theta=\frac{1}{2} \Rightarrow \theta=60^{\circ}$
Q. 30 (D)
$\vec{\tau} \times \overrightarrow{\mathrm{L}}$
then
$\vec{\tau} \| \overrightarrow{\mathrm{L}}$
so $(\overrightarrow{\mathrm{L}})$ may increase
Q. 31 (C)
$1^{\text {st }}$ method : The direction of L is perpendicular to the line joining the bob to point C. Since this line keeps changing its orientation in space, direction of L keeps changing however as ω is constant, magnitude of L remain constant.
$\mathbf{2}^{\text {nd }} \boldsymbol{m e t h o d}$: The torque about point is perpendicular to the angular momentum vector about point C. Hence it can only change the direction of L , and not its magnitude.

Q. 32 (A)

$\mathbf{1}^{\text {st }}$ method : The angular momentum about axis CO is the component of angular momentum about point C along the line CO . This is constant both in direction and magnitude.
$\mathbf{2}^{\text {nd }} \boldsymbol{m e t h o d}$: Torque about axis CO is zero hence L about CO is constant in both direction and magnitude.
Q. 33 (D)

Conserving the angular momentum : about the hinge mua $=\left[\frac{\mathrm{m}\left(\mathrm{a}^{2}+4 \mathrm{a}^{2}\right)}{12}+\frac{5}{4} \mathrm{ma}^{2}\right] \omega$
$\Rightarrow \omega=\frac{3}{5} \frac{\mathrm{u}}{\mathrm{a}}$ Ans.
Q. 34 (B)

Since the work done is independent of the information about which point the rod is rotating, by work-energy theorem the kinetic energy will also be independent of the same.
Hence (B)
Q. 35 (A)

By conservation of angular momentum about hinge O.
$\mathrm{L}=\mathrm{I} \omega$

$$
\begin{aligned}
& \operatorname{mv} \frac{\mathrm{d}}{2}=\left[\frac{\mathrm{Md}^{2}}{12}+\mathrm{m}\left(\frac{\mathrm{~d}}{2}\right)^{2}\right] \omega \\
& \Rightarrow \frac{\mathrm{mvd}}{2}=\left(\frac{\mathrm{md}^{2}}{2}+\frac{\mathrm{md}^{2}}{4}\right) \omega \\
& \frac{\mathrm{mvd}}{2}=\frac{3}{4} \mathrm{md}^{2} \omega \quad \Rightarrow \frac{2}{3} \frac{\mathrm{v}}{\mathrm{~d}}=\omega
\end{aligned}
$$

Q. 36 (D)

$-\int \mathrm{T} . \mathrm{dt}=\mathrm{m} \cdot \mathrm{v}-\mathrm{m} \times 5$
$\int \mathrm{T} \cdot \mathrm{dt} \cdot \mathrm{r}=\frac{\mathrm{mr}^{2}}{2} \cdot \omega$
$\omega=\frac{\mathrm{v}}{\mathrm{r}}$
$\int \mathrm{T} . \mathrm{dt}=\frac{\mathrm{mv}}{2}$
$5 \mathrm{~m}-\mathrm{mv}=\frac{\mathrm{mv}}{2}, 5=\frac{3 \mathrm{v}}{2}, \mathrm{v}=\frac{10}{3} \frac{\mathrm{~m}}{\mathrm{sec}}$
Q. 37 (C)

Angular momentum conservation
$\mathrm{MVR}=\left(\mathrm{MR}^{2}+\mathrm{MR}^{2}\right) . \omega$
$\frac{\mathrm{V}}{2 \mathrm{R}}=\omega$
Q. 38 (A)

$$
\int \tau . \mathrm{dt}=\mathrm{I} \omega-0
$$

$10 \times 1=\frac{2 \times(1)^{2}}{3} \times \omega \Rightarrow 15 \mathrm{rad} / \mathrm{sec}$
$\omega=15 \mathrm{rad} / \mathrm{sec}$
K.E. $=\frac{1}{2} \times \frac{2 \times(1)^{2}}{3} \times(15)^{2}=75$ Joule
Q. 39 (D)

$$
\begin{aligned}
& \left(\mathrm{I}+\mathrm{mR}^{2}\right) \cdot \omega=\mathrm{I} \omega^{\prime}+\mathrm{mvR} \\
& \quad \omega^{\prime}=\frac{\left(\mathrm{I}+\mathrm{mR}^{2}\right) \cdot \omega-\mathrm{mVR}}{\mathrm{I}}
\end{aligned}
$$

Q. 40 (A)

$$
\begin{aligned}
& {\left[\mathrm{e}=-\frac{\left(\mathrm{V}_{1}-V_{2}\right)}{\mathrm{u}_{1}-\mathrm{u}_{2}}\right], \mathrm{I}=\frac{\frac{\omega L}{2}-0}{\mathrm{~V}}} \\
& \Rightarrow \frac{\omega \mathrm{~L}}{2}=\mathrm{V} \\
& \frac{\mathrm{mVL}}{2}=\frac{\mathrm{ML}^{2}}{3} \cdot \omega \Rightarrow \frac{\mathrm{mVL}}{2}=\frac{\mathrm{ML}^{2}}{3} \times \frac{2 V}{L} \\
& \Rightarrow \frac{M}{m}=\frac{3}{4}
\end{aligned}
$$

Q. 41 (C)

Immediately after string connected to end B is cut, the rod has tendency to rotate about point A .
Torque on rod $A B$ about axis passing through A and normal to plane of paper is

$$
\frac{\mathrm{m} \ell^{2}}{3} \alpha=\mathrm{mg} \frac{\ell}{2} \Rightarrow \alpha=\frac{3 \mathrm{~g}}{2 \ell}
$$

Aliter : Applying Newton's law on center of mass
$\mathrm{mg}-\mathrm{T}=\mathrm{ma}$
....(i)
Writing $\tau=\mathrm{I} \alpha$ about center of mass

$\mathrm{T} \frac{\ell}{2}=\frac{\mathrm{m} \ell^{2}}{12} \alpha$
Also $\mathrm{a}=\frac{\ell}{2} \alpha$
From (i), (ii) and (iii)

$$
\alpha=\frac{3 \mathrm{~g}}{2 \ell}
$$

Q. 42 (C)

Friction will at forward dir so body will always move in forward dir.
Q. 43 (D)

FBD for sphere \& block

$\vec{a}_{1}=\mu g \hat{i}$
$\vec{a}_{2}=-\mu g \hat{i}$
$\overrightarrow{\mathrm{a}}_{\mathrm{rel}}=\overrightarrow{\mathrm{a}}_{1}-\overrightarrow{\mathrm{a}}_{2}=2 \mu \mathrm{~g} \hat{\mathrm{i}}$
$\mathrm{a}_{\mathrm{rel}}=2 \mu \mathrm{~g}$.
Q. 44 (C)

Using Energy conservation, (at maximum distance $\mathrm{V}=0 \mathrm{~V}_{0}=0$)

$$
\begin{aligned}
& \frac{1}{2} K x^{2}=(m g x \sin \theta) \\
& x=\left(\frac{2 m g \sin \theta}{K}\right)
\end{aligned}
$$

Q. 45 (A)

$20=10+\omega\left(\frac{\ell}{2}\right)$
$10=\frac{\omega}{2}$
$(\omega=20 \mathrm{rad} / \mathrm{se})$

Q. 46 (D)

Since the two bodies have same mass and collide head-on elastically, the linear momentum gets interchanged.
Hence just after the collision 'B' will move with velocity ' v_{0} ' and 'A' becomes stationary but continues to rotate at the same initial angular velocity $\left(\frac{\mathrm{v}_{0}}{\mathrm{R}}\right)$. Hence, after collision.
$(\text { K.E. })_{B}=\frac{1}{2} \operatorname{mv}_{0}^{2}$
$\operatorname{and}(\text { K.E. })_{A}=\frac{1}{2} \mathrm{I} \omega^{2}=\frac{1}{2}\left(\frac{2}{3} \mathrm{mR}^{2}\right) \cdot\left(\frac{\mathrm{v}_{0}}{\mathrm{R}}\right)^{2}$
$\Rightarrow \frac{(\text { K.E. })_{\mathrm{B}}}{(\text { K.E. })_{\mathrm{A}}}=\frac{3}{2}$ Hence (D).
Note : Sphere 'B' will not rotate, because there is no torque on ' B ' during the collision as the collision is head-on.

Q. 47 (B)

Disc in pure rolling and external force zero after smooth surface pure rolling continue.
Q. 48 (A)

Just before collision Between two Balls potential energy lost by Ball $\mathrm{A}=$ kinetic energy gained by Ball A.

$\operatorname{mg} \frac{\mathrm{h}}{2}=\frac{1}{2} \mathrm{I}_{\mathrm{cm}} \omega^{2}+\frac{1}{2} \mathrm{mv}_{\mathrm{cm}}^{2}$
$=\frac{1}{2} \times \frac{2}{5} \mathrm{mR}^{2} \times\left(\frac{\mathrm{v}_{\mathrm{cm}}}{\mathrm{R}}\right)^{2}+\frac{1}{2} \mathrm{mv}_{\mathrm{cm}}^{2}$
$=\frac{1}{5} m v_{\mathrm{cm}}^{2}+\frac{1}{2} m v_{\mathrm{cm}}^{2}$
$\Rightarrow \frac{5}{7} \mathrm{mgh}=\mathrm{mv}_{\mathrm{cm}}^{2} \Rightarrow \frac{\mathrm{mgh}}{7}=\frac{1}{5} \mathrm{mv}_{\mathrm{cm}}^{2}$
After collision only translational kinetic energy is transfered to ball B
So just after collision rotational kinetic energy of
Ball $\mathrm{A}=\frac{1}{5} \mathrm{mv}_{\mathrm{cm}}^{2}=\frac{\mathrm{mgh}}{7}$

Q. 49 (C)

Let velocity of c.m. of sphere be v. The velocity of the plank $=2 \mathrm{v}$.

Kinetic energy of plank $=\frac{1}{2} \times m \times(2 v)^{2}$
$=2 \mathrm{mv}^{2}$
Kinetic energy of cylinder
$=\frac{1}{2} \mathrm{mv}^{2}+\frac{1}{2}+\left(\frac{1}{2} \mathrm{mR}^{2} \omega^{2}\right)$
$=\frac{1}{2} \mathrm{mv}^{2}\left(1+\frac{1}{2}\right)=\frac{3}{2} \cdot \frac{1}{2} \mathrm{mv}^{2}$

$$
\therefore \frac{\text { K.E. of plank }}{\text { K.E. of sphere }}=\frac{2 \mathrm{mv}^{2}}{\frac{3}{4} \mathrm{mv}^{2}}=\frac{8}{3} .
$$

Q. 50 (C)

The horizontal shift of end x will be double the shift of centre of spool. Hence centre travels by $\frac{S}{2}$.
Q. 51 (D)

Torque about COM
f. $\mathrm{R}=\mathrm{I} \cdot \alpha(\mathrm{a}=\alpha \mathrm{R})$
$\mathrm{f} . \mathrm{R}=\frac{\mathrm{mR}^{2}}{2} \mathrm{a}=\left(\frac{\mathrm{mR}^{2}}{2} \cdot \mathrm{R}\right) \Rightarrow\left(\mathrm{f}=\frac{\mathrm{ma}}{2}\right)$
Q. 52 (B)

$\mathrm{f}=4 \mathrm{ma}$
$(\mathrm{mg}-\mathrm{f}) \mathrm{r}=\left(3 \mathrm{mr}^{2}+\mathrm{mr}^{2}\right) \alpha$
$\mathrm{mg}-\mathrm{f}=4 \mathrm{ma}$
from (1) and (2)
$\Rightarrow 8 \mathrm{ma}=\mathrm{mg}$
$\Rightarrow \mathrm{a}=\frac{\mathrm{g}}{8} \Rightarrow \alpha=\frac{\mathrm{g}}{8 \mathrm{r}}$
Q. 53 (B)

Here, $\mathrm{u}=\mathrm{V}_{0}, \omega_{0}=-\frac{\mathrm{V}_{0}}{2 \mathrm{R}}$
At pure rolling ;

$$
\begin{aligned}
& \mathrm{V}=\mathrm{V}_{0}-\left(\frac{\mathrm{F}_{\mathrm{f}}}{m}\right) \mathrm{t} \\
& \& \frac{\mathrm{~V}}{\mathrm{R}}=-\frac{\mathrm{V}_{0}}{2 \mathrm{R}}+\left(\frac{\mathrm{F}_{\mathrm{f}}}{m \cdot \mathrm{R}}\right) \mathrm{t}(\text { In pure rolling } \mathrm{V}=\mathrm{R} \omega) \\
& \left(\alpha=\frac{\tau}{\mathrm{I}}=\frac{\mathrm{F}_{\mathrm{f}} \cdot \mathrm{R}}{\mathrm{mR}^{2}}\right) \\
& \Rightarrow \mathrm{V}_{0}-\mathrm{V}=\mathrm{V}+\frac{\mathrm{V}_{0}}{2} \\
& \Rightarrow 2 \mathrm{~V}=\frac{\mathrm{V}_{0}}{2} \Rightarrow \mathrm{~V}=\frac{\mathrm{V}_{0}}{4} \text { Ans. }
\end{aligned}
$$

Q. 54 (D)

As the disc is in combined rotation and translation, each point has a tangential velocity and a linear velocity in the forward direction.
From figure
$\mathrm{v}_{\text {net }}$ (for lowest point $=\mathrm{v}-\mathrm{R} \omega=\mathrm{v}-\mathrm{v}=0$.
and Acceleration $=\frac{\mathrm{v}^{2}}{\mathrm{R}}+0=\frac{\mathrm{v}^{2}}{\mathrm{R}}$

(Since linear speed is constant
Hence (D).
(A)

Angluar momentum conservation about contact point
$\operatorname{muR}=\left(\mathrm{I}_{\mathrm{A}}\right) \omega$

$\mathrm{I}_{\mathrm{A}}=\left(\frac{\mathrm{mR} \mathrm{R}^{2}}{2}+\mathrm{mR} \mathrm{R}^{2}\right)+\mathrm{m}(\sqrt{2} \mathrm{R})^{2}=\frac{7}{2} \mathrm{mR}^{2}$
$\omega=\frac{m u R}{\frac{7}{2} m^{2}}=\frac{2 \mathrm{u}}{7 \mathrm{R}}$
Ans.
Q. 56 (A)

Since there is no slipping at any interface, the velocities of bottom and upper most point of lower and upper cylinder are shown in figure.
Angular velocity of upper cylinder $=\frac{2 \mathrm{~V}+\mathrm{V}}{2 \mathrm{R}}=\frac{3 \mathrm{~V}}{2 \mathrm{R}}$

Angular velocity of lower cylinder $=\frac{\mathrm{V}-0}{2 \mathrm{R}}=\frac{\mathrm{V}}{2 \mathrm{R}}$

The ratio is $\frac{3}{1}$

Q. 57 (D)

$$
\mathrm{T}_{\mathrm{A}}=\operatorname{Fr}(\mathrm{d} / 2)+\mathrm{F}_{2}(\mathrm{~d})
$$

$\left(\mathrm{F}_{1}+\mathrm{F}_{2}\right) \frac{\mathrm{d}}{2}+\mathrm{F}_{2} \mathrm{~d}=\left(\mathrm{F}_{1}+\mathrm{F}_{2}\right)\left(\frac{3 \mathrm{~d}}{4}\right)+\mathrm{F}_{1} \mathrm{~d}$
$\frac{\mathrm{F}_{1}+\mathrm{F}_{2}}{2}+\mathrm{F}_{2}=\left(\frac{3}{4} \mathrm{~F}_{1}+\frac{3}{4} \mathrm{~F}_{2}+\mathrm{F}_{1}\right)$
$\frac{\mathrm{F}_{1}}{2}-\frac{3}{4} \mathrm{~F}_{1}-\mathrm{F}_{1}=\left(\frac{3}{4} \mathrm{~F}_{1}+\mathrm{F}_{2}-\frac{\mathrm{F}_{2}}{2}\right)$
$\left(\frac{-\mathrm{F}_{1}}{4}-\mathrm{F}_{1}\right)=\left(\frac{-\mathrm{F}_{2}}{4}-\frac{\mathrm{F}_{2}}{2}\right)$
$\frac{5 \mathrm{~F}_{1}}{4}=\frac{3 \mathrm{~F}_{2}}{4}$
$5 \mathrm{~F}_{1}=3 \mathrm{~F}_{2}$
$\frac{\mathrm{F}_{1}}{\mathrm{~F}_{2}}=\left(\frac{3}{5}\right)$.
Q. 58 (C)
Q. 59 (A)

Q. 60 (D)

Due to torque of friction about $\mathrm{CM} \omega$ eventually decreases to zero, initially there is no translation. Fric-
tion is sufficient for puse rolling therefore after sometime pure rolling beging. There is no external force in \times direction therefore momentum is conserved along \times direction.
Q. 61 (D)
$\mathrm{a}=\frac{5 \mathrm{~g} \sin \theta}{7}$
(i) $25=\frac{1}{2}$ a t ${ }^{2}{ }_{Q}$ to 0

$$
\begin{equation*}
5=\frac{1}{2} a t_{P \text { to } 0}^{2} \tag{1}
\end{equation*}
$$

$\mathrm{t}_{\mathrm{Q} \text { to } 0}=\sqrt{\frac{45}{\mathrm{a}}}$
$\mathrm{t}_{\text {P to } 0}=\sqrt{\frac{25}{\mathrm{a}}}$
(ii) $\mathrm{Mg} \sin \theta-\mathrm{f}=\mathrm{ma}$
$\mathrm{fR}=\mathrm{I} \alpha$
$m g \sin \theta-\frac{\mathrm{I} \alpha}{\mathrm{R}}=\mathrm{ma}$

$m g \sin \theta=I \frac{\alpha}{R}+m a \quad a=\alpha R$
$m g \sin \theta=\frac{\mathrm{Ia}}{\mathrm{R}^{2}}+\mathrm{ma}$
$m g \sin \theta=a\left(\frac{I}{R^{2}}+m\right)$

$$
\begin{aligned}
& \mathrm{a}=\frac{\mathrm{mg} \sin \theta}{\mathrm{~m}\left(1+\frac{\mathrm{I}}{\mathrm{mR}^{2}}\right)} \quad \mathrm{I}=\frac{2}{5} \mathrm{mR}^{2} \\
& \mathrm{a}=\frac{\mathrm{g} \sin \theta}{1+\frac{2}{5} \frac{\mathrm{MR}^{2}}{\mathrm{MR}^{2}}}
\end{aligned}
$$

$$
\mathrm{a}=\frac{\mathrm{g} \sin \theta}{1+\frac{2}{5}}=\frac{5 \mathrm{~g} \sin \theta}{7}
$$

(iii) $K \cdot E_{\text {at } O \text { from } P}=m g h$
$\mathrm{K} . \mathrm{E}_{\mathrm{at} \mathrm{O} \text { from } \mathrm{P}}=2 \mathrm{mgh}$

Q. 62 (C)

$\mathrm{mgh}=\frac{1}{2} \mathrm{I} \omega^{2}+\frac{1}{2} \mathrm{mV}^{2}$

$\mathrm{mgh}=\frac{1}{2}\left(\mathrm{mR}^{2} \times \frac{\mathrm{V}^{2}}{\mathrm{R}^{2}}\right)+\frac{1}{2} \mathrm{mV}^{2}$
$2 \mathrm{mgh}=\mathrm{mV}^{2}(1+\mathrm{C})$
$\mathrm{V}^{2}=\frac{2 \mathrm{gh}}{1+\mathrm{C}}$
K.E. $=\frac{1}{2} \mathrm{mV}^{2}=\frac{1}{2} \mathrm{~m} \cdot \frac{2 \mathrm{gh}}{1+\mathrm{C}}=\frac{\mathrm{mgh}}{1+\mathrm{C}}$
$\mathrm{K} \cdot \mathrm{E}_{\text {ring }}=\frac{\mathrm{mgh}}{1+1}=\frac{\mathrm{mgh}}{2}$
$\mathrm{K} . \mathrm{E}_{\text {coin }}=\frac{\mathrm{mgh}}{1+\frac{1}{2}}=\frac{2}{3} \mathrm{mgh}$
$\mathrm{K} . \mathrm{E}_{\text {solid sphere }}=\frac{\mathrm{mgh}}{1+\frac{2}{5}}=\frac{5}{7} \mathrm{mgh}$
Ratio $=\frac{1}{2}: \frac{2}{3}: \frac{5}{7}$
$=21: 28: 30$
Q. 63 (B)
$\alpha=\frac{\mathrm{a}}{\mathrm{R}}$

$$
\mathrm{F}-\mathrm{f}=\mathrm{Ma}
$$

f. R - F.r = I. α
assumed direction of friction is same so spool rotates clockwise and thread winds.
Q. 64 (B)

For pure rolling

$\mathrm{Mg} \sin \theta-\mathrm{f}=\mathrm{Ma}$
$\mathrm{f} . \mathrm{R}=\frac{\mathrm{MR}^{2}}{2} \cdot \frac{\mathrm{a}}{\mathrm{R}}$
$\mathrm{Mg} \sin \theta=\frac{3 \mathrm{Ma}}{2} \Rightarrow \mathrm{a}=\frac{2 \mathrm{~g} \sin \theta}{3}$
Now $\frac{\mathrm{L}}{2}=\frac{1}{2} \cdot \frac{2 \mathrm{~g} \sin \theta \cdot \mathrm{t}^{2}}{3}$
$\mathrm{V}_{\mathrm{B}}^{2}=\frac{2 \times 2 \mathrm{~g} \sin \theta}{3} \times \frac{\mathrm{L}}{2}=\frac{2 \mathrm{~g} \sin \theta \mathrm{~L}}{3}$
$\omega_{B}=\frac{V_{B}}{R}$
$\therefore \mathrm{V}_{\mathrm{C}}{ }^{2}-\mathrm{V}_{\mathrm{B}}^{2}=2 \mathrm{~g} \sin \theta \cdot \frac{\mathrm{~L}}{2}=\mathrm{gL} \sin \theta$
$\mathrm{V}_{\mathrm{C}}{ }^{2}=\mathrm{g} \sin \theta \mathrm{L}+\frac{2 \mathrm{gL} \sin \theta}{3}$
$=\frac{5 \mathrm{gL} \sin \theta}{3}$
\therefore Rotational kinetic energy $=\frac{1}{2} \cdot \frac{\mathrm{MR}^{2}}{2} \cdot \frac{\mathrm{~V}_{\mathrm{B}}^{2}}{\mathrm{R}^{2}}$
$=\frac{1}{2} \cdot \frac{\mathrm{M} \cdot 2 \mathrm{~g} \sin \theta \mathrm{~L}}{3}$
$\begin{array}{ll}\text { Q. } 65 & \text { (D) } \\ \text { Q. } 66 & \text { (D) } \\ \text { Q. } 67 & \text { (A) }\end{array}$

$=\frac{1}{2} \mathrm{MV}^{2}+\frac{1}{2} \frac{\mathrm{MR}^{2} \times \mathrm{V}^{2}}{\mathrm{R}^{2}}+\frac{1}{2} \mathrm{M}\left(2 \mathrm{~V}^{2}\right)+\frac{1}{2}$
$\mathrm{M}(2 \mathrm{~V})^{2}+\frac{1}{2} \cdot 2 \mathrm{M}(2 \mathrm{~V})^{2}$
$=6 \mathrm{MV}^{2}$

Q. 68 (C)

Angular momentum conservation (about A)

$$
\frac{2}{5} \mathrm{MR}^{2} \omega_{0}=\mathrm{MV}_{0} \mathrm{R} \quad 5 \mathrm{~V}_{0}=2 \omega_{0} \mathrm{R}
$$

Q. 69 (B)

When ball at maximum height block and ball has equal velocity So Using momentum conservation

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{i}}=\mathrm{mv} \\
& \mathrm{P}_{\mathrm{f}}=2 \mathrm{mv}_{0}\left(\mathrm{v}_{0} \text { final velocity }\right) \\
& \mathrm{P}_{\mathrm{i}}=\mathrm{P}_{\mathrm{t}} \\
& \mathrm{mv}=2 \mathrm{mv}_{0} \\
& \mathrm{~V}_{0}=\left(\frac{\mathrm{V}}{2}\right)
\end{aligned}
$$

Using energy conservation

$$
\begin{aligned}
& \frac{1}{2} \mathrm{I} \omega^{2}+\frac{1}{2} \mathrm{mv}^{2}=\frac{1}{2} \mathrm{I} \omega^{2}+\frac{1}{2} 2 \mathrm{mv}_{0}^{2}+\mathrm{mgh} \\
& \left(\mathrm{I}=\mathrm{mR}^{2}\right) \\
& \mathrm{v}=\omega \mathrm{R} \\
& \frac{1}{2} \mathrm{mv}^{2}=\frac{1}{2} 2 \mathrm{mv}_{0}^{2}+2 \mathrm{mgh} \\
& \mathrm{v}^{2}-2 \frac{\mathrm{v}^{2}}{4}=2 \mathrm{gh} \\
& \left(\mathrm{~h}=\frac{\mathrm{v}^{2}}{4 g}\right)
\end{aligned}
$$

Q. 70 (D)

As torque $=$ change in angular momentum
$\therefore \quad \mathrm{F} . \Delta \mathrm{t}=\mathrm{mv}$ (Linear). (1)
and $\left(\mathrm{F} \cdot \frac{\ell}{2}\right) \Delta \mathrm{t}=\frac{\mathrm{m} \ell^{2}}{12} \cdot \omega$ (Angular)
Dividing
: (1) and (2)

$$
2=\frac{12 \mathrm{v}}{\omega \ell} \Rightarrow \omega=\frac{6 \mathrm{v}}{\ell}
$$

Using $S=u t$:
Displacement of COM is $\frac{\pi}{2}=\omega \mathrm{t}=\left(\frac{6 \mathrm{v}}{\ell}\right) \mathrm{t}$ and $\mathrm{x}=\mathrm{vt}$

Dividing $\frac{2 \mathrm{x}}{\pi}=\frac{\ell}{6}$
$\Rightarrow \mathrm{x}=\frac{\pi \ell}{12} \Rightarrow$ Coordinate of A will be $\left[\frac{\pi \ell}{12}+\frac{\ell}{2}, 0\right]$
Hence (D).
Q. 71 (C)

Angular Momentum conservation about C.O.M.

$2 \mathrm{~m} . \mathrm{v} \cdot \frac{\mathrm{b}}{2}+\operatorname{mv} \frac{\mathrm{b}}{2}=\left(2 \mathrm{~m} \cdot \frac{\mathrm{~b}^{2}}{4} \cdot \omega\right)+0$
$\Rightarrow \quad \frac{3 \mathrm{mvb}}{2}=\frac{\mathrm{mb}^{2}}{2} \cdot \omega \quad \omega=\frac{3 \mathrm{~V}}{\mathrm{~b}}$
L.M.C. $2 m V-m V=2 m V^{\prime}$
$\mathrm{V}^{\prime}=0.5 \mathrm{~V}$
$\mathrm{x}=0.5 \mathrm{Vt}+0.5 \mathrm{~b} \sin \omega \mathrm{t}$
$y=0.5 \cos \omega t \quad$ where $\omega=\frac{3 V}{b}$

Q. 72 (B)

L.M.C. $\mathrm{mV}_{0}=\mathrm{MV}_{\mathrm{CM}}$
A.M.C. (A)
$\operatorname{mv}_{0} \mathrm{x}=\frac{\mathrm{ML}^{2}}{12} \omega$
$\frac{\omega L}{2}=V_{C M} \Rightarrow x=\frac{L}{6}$
Q. 73 (D)
$\mathrm{J}=\mathrm{M} \cdot \mathrm{V}_{\mathrm{COM}}$

$$
\frac{\mathrm{J} . \mathrm{L}}{2}=\frac{\mathrm{ML}^{2} \omega}{12}
$$

$$
\Rightarrow \omega=\frac{6 \mathrm{~J}}{\mathrm{ML}}
$$

$$
\theta=\omega \mathrm{t}=\frac{6 \mathrm{~J}}{\mathrm{ML}} \cdot \frac{\pi \mathrm{ML}}{12 \mathrm{~J}}=\frac{\pi}{2} \Rightarrow \mathrm{~V}=\frac{\sqrt{2} \mathrm{~J}}{\mathrm{M}}
$$

Q. 74 (C)

$\int \overrightarrow{\mathrm{L}} \mathrm{dt}=$ change in angular momentum
$\mathrm{MV} \sin 30^{\circ} \frac{\mathrm{L}}{2}=\frac{2 \mathrm{ML}^{2} \omega}{4} \frac{\mathrm{~V}}{2 \mathrm{~L}}=\omega$
Q. 75 (B)
J. $\frac{\mathrm{L}}{2}=\mathrm{I} \omega$

$\mathrm{J} \cdot \frac{\mathrm{L}}{2}=2 \frac{\mathrm{ML}^{2}}{4} \cdot \omega \Rightarrow \omega=\frac{\mathrm{J}}{\mathrm{ML}}$
$\mathrm{J}=2 \mathrm{M} \mathrm{V}_{\mathrm{COM}}$
$\mathrm{V}_{\mathrm{COM}}=\frac{\mathrm{J}}{2 \mathrm{M}}$
Now, $\mathrm{V}_{\mathrm{A}}=\frac{\mathrm{J}}{2 \mathrm{M}}+\frac{\mathrm{J}}{\mathrm{ML}} \cdot \frac{\mathrm{L}}{2}=\frac{\mathrm{J}}{\mathrm{M}}$
Q. 76 (C)

$\frac{2}{3} \mathrm{mR}^{2} \omega+\mathrm{mvR}+\mathrm{mvR}=\frac{8}{3} \mathrm{mvR}$
Water is at rest w.r.t centre.
Q. 77 (C)

$2 \mathrm{t}-\mathrm{f}=0$
$\tau_{\mathrm{A}}=\mathrm{wt}(\mathrm{R}+\mathrm{r})$
$\int_{0}^{\mathrm{L}} \mathrm{dL}=\int_{0}^{\mathrm{t}} 2 \mathrm{t}(\mathrm{R}+\mathrm{r}) \mathrm{dt}$
$\mathrm{L}=(\mathrm{R}+\mathrm{r}) \mathrm{t}^{2}$
Q. 78 (D)

For rigid body separation between two point remains same.
$\mathrm{v}_{1} \cos 60^{\circ}=\mathrm{v}_{2} \cos 30^{\circ}$
$\frac{\mathrm{v}_{1}}{2}=\frac{\sqrt{3} \mathrm{v}_{2}}{2} \Rightarrow \mathrm{v}_{1}=\sqrt{3} \mathrm{v}_{2}$

$\omega_{\text {disc }}=\left|\frac{v_{2} \sin 30^{\circ}-v_{1} \sin 60^{\circ}}{d}\right|=\left|\frac{\frac{v_{2}}{2}-\frac{\sqrt{3} v_{1}}{2}}{d}\right|$

$$
\begin{aligned}
& =\left|\frac{\mathrm{v}_{2}-\sqrt{3} \times \sqrt{3} \mathrm{v}_{2}}{2 \mathrm{~d}}\right|=\frac{2 \mathrm{v}_{2}}{2 \mathrm{~d}}=\frac{\mathrm{v}_{2}}{\mathrm{~d}} \\
& \omega_{\mathrm{disc}}=\frac{\mathrm{v}_{2}}{\mathrm{~d}}
\end{aligned}
$$

Q. 79 (B)

There is no force in Horizontal direction C.O.M. will remain constant

Quarter circle with Radius $\frac{\mathrm{L}}{4}$
Q. 80 (C)

$\omega=\frac{\mathrm{V}}{\ell \sin \theta}=\frac{2 \mathrm{v}}{\ell}$

JEE-ADVANCED

MCQ/COMPREHENSION/COLUMN MATCHING

Q. 1 (A, B, C)

Sphere is rotating about a diameter
so $a=\alpha R$
but, R is zero for particles on the diameter.
Q. 2
(A, B, C)

Using perpendicular theorem
$\mathrm{I}_{0}=\mathrm{I}_{4}+\mathrm{I}_{3} \quad \mathrm{I}_{3}=\mathrm{I}_{4}$
$\mathrm{I}_{0}=\mathrm{I}_{1}+\mathrm{I}_{2} \quad \mathrm{I}_{2}=\mathrm{I}_{1}$
$\mathrm{I}_{3}=\mathrm{I}_{2}$
so, $\left(I_{0}=I_{1}+I_{3}\right)$
Q. 3 (A,B,C,D)
$\mathrm{I}_{1}+\mathrm{I}_{3}=\mathrm{I} \Rightarrow 2 \mathrm{I}_{1}=2 \mathrm{I}_{3}=\mathrm{I}$
$\mathrm{I}_{2}+\mathrm{I}_{4}=\mathrm{I}, 2 \mathrm{I}_{2}=2 \mathrm{I}_{4}=\mathrm{I}$
$\mathrm{I}_{1}=\mathrm{I}_{2}=\mathrm{I}_{3}=\mathrm{I}_{4}=\mathrm{I}$
Q. 4 (A, D)
(1) For no slipping $\mu \mathrm{mg} \cos \theta \geq m g \sin \theta$
For toppling $m g \sin \theta \frac{\mathrm{~h}}{2} \geq \mathrm{mg} \cos \theta . \frac{\mathrm{a}}{2}$
.........(2)
for minimum μ (by dividing)
$\mu \cdot \frac{2}{a}=\frac{2}{h}$

$$
\mu_{\min }=\frac{\mathrm{a}}{\mathrm{~h}} .
$$

[Ans.: a/h]
(2)

If $\mathrm{f}>\mathrm{mg} \sin \theta$
$\mu \mathrm{mg} \cos \theta>m g \sin \theta$
($\mu>\tan \theta$) block will topple before sliding torque about point $\mathrm{A} \tau_{\mathrm{A}}=0$
$m g \sin \theta(h / 2)=m g \cos \theta \frac{a}{2}$
$\tan \theta=(\mathrm{a} / \mathrm{h})$
$\mu>(a / h)$
If $\mu>\tan \theta$ (block will slide)
Q. 5 (B, C)

$$
\begin{aligned}
& \mathrm{N}_{\mathrm{A}}+\mathrm{N}_{\mathrm{B}}=\mathrm{W} \\
& \mathrm{~W}(\mathrm{~d}-\mathrm{x})=\mathrm{N}_{\mathrm{A}} \cdot \mathrm{~d}
\end{aligned}
$$

Q. 6 (B, C, D)

Body is in equilibrium
So $\tau_{\text {net }}=0$
or
$\mathrm{F}_{\text {net }}=0$

Q. 7 (A, B, D)

Angular momentum is not conserved
Q. 8 (A, B, C)
(A) $\mathrm{KE}=\frac{1}{2} \mathrm{I} \omega^{2}$

I depends on m
$\therefore \quad$ KE depends on m

(B) $\mathrm{I}_{\mathrm{y}_{\text {axis }}}=2 \mathrm{Ma}^{2}$
K.E. $=\frac{1}{2} \times 2 \mathrm{Ma}^{2} \omega^{2}=\mathrm{Ma}^{2} \omega^{2}$
$\mathrm{I}_{\mathrm{zaxis}}=2\left(\mathrm{Ma}^{2}+\mathrm{mb}^{2}\right)$
K.E. $=\frac{1}{2} \mathrm{I} \omega^{2}=\left(\mathrm{Ma}^{2}+\mathrm{mb}^{2}\right) \omega^{2}$
Q. 9 (A, B)

In absence of external force linear momentum and angular momentum remains const.

Q. 10 (B, C)

External force will act at hinge so linear momentum of system will not remain const. but torque of external
force is zero about hinge so $\vec{L}=$ const., collision is elastic so K.E = const.

Q. 11 (A, B, D)

at the moment when ring is placed friction will act between them due to relative motion. Friction is internal force between them so angular momentum of system is conserved.
$\mathrm{I}_{1} \omega_{1}=\mathrm{I}_{2} \omega_{2}$
$\frac{m R^{2}}{2} \omega_{0}=\left(\frac{m R^{2}}{2}+m R^{2}\right) \omega$
$\omega=\frac{\omega_{0}}{3}$
Q. 12 (A,C,D)
τ is constant(mgr)

Q. 13 (A,C,D)
Q. 14 (A, C, D)

for pure rolling
$\mathrm{V}=\omega \mathrm{R}$
$\mathrm{V}_{\mathrm{A}}=0$
$\mathrm{V}_{\mathrm{B}}=\sqrt{2} \mathrm{~V}$
$\left(\mathrm{V}_{\mathrm{C}}=2 \mathrm{~V}\right)$
Q. 15 (A, C)

If bicycle is accelerating on a horizontal plane then friction on front wheel will be backward and on rear wheel it will be in forward direction.
But if bicycle is accelerating down an inclined plane then friction on rear wheel may be backward or forward both.
Q. 16 (B,C,D)

After B there is no friction
$\therefore \quad \mathrm{F}_{\text {net }} \uparrow$ or acceleration \uparrow
$\mathrm{F}-\mathrm{f}=\mathrm{ma}$
f. $R=\frac{m R^{2}}{2} \cdot \frac{a}{R}$
$\mathrm{f}=\frac{\mathrm{ma}}{2}$ acceleration became doulble
Q. 17 (A,C,D)
Q. 18 (B, C)

Velocity of COM is zero

Q. 19 (A,B,D)
(A) Change in Angular Mom.

$=L_{\mathrm{f}}-\mathrm{L}_{\mathrm{i}}$
$=\left(\mathrm{I} \omega-\mathrm{mV}_{0} \mathrm{R}\right)-\left(\mathrm{I} \omega+\mathrm{mV}_{0} \mathrm{R}\right)$
$=-2 \mathrm{mV}_{0} \mathrm{R}$
(B) Impulse $=$ Change in momentum $=-2 \mathrm{mV}_{0} \mathrm{R}$
Q. 20 (C, D)

All points in the body, in plane perpendicular to the axis of rotation revolve in concentric circles. All points lying on circle of same radius have same speed (and also same magnitude of acceleration) but different directions of velocity (also different directions of acceleration)
Hence there cannot be two points in the given plane with same velocity or with same acceleration.
As mentioned above, points lying on circle of same radius have same speed.
Angular speed of body at any instant w.r.t. any point on body is same by definition.
Q. 21 (A, B, C)

By angular momentum conservation ;
$L=I \omega \Rightarrow m v \frac{R}{2}+m v R=2 m R^{2} \omega$

$\frac{3}{2} m v R=2 m R^{2} \omega$
$\omega=\frac{3 v}{4 R}$
Also as the time of contact ;
$m g \cos \theta-N=\frac{m v^{2}}{R}$
$\therefore \mathrm{N}=\mathrm{mg} \cos \theta-\frac{\mathrm{mv}^{2}}{\mathrm{R}}$
when it ascends θ decreases so cosq increases and v decreases.
$\therefore m g \cos \theta$ is increasing and $\frac{m v^{2}}{R}$ is decreasing
\therefore we can say N increases as wheel ascends.
Q. 22 (B)

Let the angular speed of disc when the balls reach the end be ω. From conservation of angular momentum $\frac{1}{2} m R^{2}{\underset{\omega}{0}}_{\omega}=\frac{1}{2} m R^{2} \omega+\frac{m}{2} R^{2} \omega+\frac{m}{2} R^{2} \omega$
or $\omega=\frac{\omega_{0}}{3}$
Q. 23 (C)

The angular speed of the disc just after the balls leave the disc is

$$
\omega=\frac{\omega_{0}}{3}
$$

Let the speed of each ball just after they leave the disc be v .

From conservation of energy

$$
\begin{aligned}
& \frac{1}{2}\left(\frac{1}{2} m R^{2}\right) \omega_{0}^{2} \\
& =\frac{1}{2}\left(\frac{1}{2} m R^{2}\right) \omega^{2}+\frac{1}{2}\left(\frac{m}{2}\right) v^{2}+\frac{1}{2}\left(\frac{m}{2}\right) v^{2}
\end{aligned}
$$

solving we get

$$
\mathrm{v}=\frac{2 R \omega_{0}}{3}
$$

NOTE : $v=\sqrt{(\omega R)^{2}+v_{r}^{2}} \quad ; v_{r}=$ radial velocity of the ball
Q. 24 (D)

Workdone by all forces equal

$$
K_{f}-K_{i}=\frac{1}{2}\left(\frac{m}{2}\right) v^{2}=\frac{m R^{2} \omega_{0}^{2}}{9}
$$

Q. 25 (D)
Q. 26 (C)
Q. 27 (A)

The free body diagram of plank and disc is
Applying Newton's second law

$$
\begin{equation*}
\mathrm{F}-\mathrm{f}=\mathrm{Ma}_{1} \tag{1}
\end{equation*}
$$

$\mathrm{f}=\mathrm{Ma}_{2}$

$$
\begin{equation*}
\mathrm{FR}=\frac{1}{2} \mathrm{MR}^{2} \alpha \tag{2}
\end{equation*}
$$

from equation 2 and 3

$$
a_{2}=\frac{R \alpha}{2}
$$

From constraint $a_{1}=a_{2}+R \alpha$

$$
\begin{equation*}
\therefore \mathrm{a}_{1}=3 \mathrm{a}_{2} \tag{4}
\end{equation*}
$$

Solving we get $a_{1}=\frac{3 F}{4 M}$ and $\alpha=\frac{F}{2 M R}$
If sphere moves by x the plank moves by $L+x$. The from equation (4)

$$
\mathrm{L}+\mathrm{x}=3 \mathrm{x} \text { or } \mathrm{x}=\frac{\mathrm{L}}{2}
$$

Q. 28 (C)
Q. 29 (A)
Q. 30 (C)
Q. 31 (C)
Q. 32 (B)

By conservation of any momentum, $\mathrm{I}_{\omega} \mathrm{W}_{\omega}+\mathrm{I}_{\mathrm{m}} \omega_{\mathrm{m}}=$ constant.]
Q. 33 (C)
$\mathrm{T}=\frac{2 \mathrm{u} \sin \theta}{\mathrm{g}}=3.6 \mathrm{sec}$.
Q. 34 (A)
$0.4 \times \frac{300}{0.3}=0.4 \times 160+20 \omega$
$40=64+20 \omega$
$\omega=-1.2 \mathrm{rad} / \mathrm{s}$
$\theta=\omega \mathrm{t}=1.2 \times 3.6=4.32 \mathrm{rad}$
Q. 35 (B)

Direction of velocity of all points
on the rod is perpendicular to the plane outwards
Q. 36 (B)

As angular velocity is uniform so angular acceleration is zero which means there should be no torque in vertical direction]
Q. 37 (A) p,q,r (B) p,q,r (C) p,q (D) p,q,r

Since all forces on disc pass through point of contact with horizontal surface, the angular momentum of disc about point on ground in contact with disc is conserved. Also the angular momentum of disc in all cases is conserved about any point on the line passing through point of contact and parallel to velocity of centre of mass.
The K.E. of disc is decreased in all cases due to work done by friction.
From calculation of velocity of lowest point on disc, the direction of friction in case A, B and D is towards left and in case C is towards right.
The direction of frictional force cannot change in any given case.
Q. 38 (A) p (B) q,s (C) p (D) q,s
(A) Speed of point P changes with time
(B) Acceleration of point P is equal to $\omega^{2} x(\omega=$ angular speed of disc and $x=O P$). The acceleration is directed from P towards O .
(C) The angle between acceleration of P (constant in magnitude) and velocity of P changes with time. Therefore, tangential acceleration of P changes with time.
(D) The acceleration of lowest point is directed towards centre of disc and remains constant with time

NUMERICAL VALUE BASED

Q. 1 [2]

CM at 0.1

$L_{i}=L_{f}$
$2 \times 0.5 \times 0.2 \sin 37^{\circ}$
$=-1 \times 0.5 \times 0.2 \cos 37^{\circ}+\frac{2 \times 4}{2+4} \times(0.3)^{2} \omega$
$0.2 \times \frac{3}{5}+0.1 \times \frac{4}{5}=\frac{8}{6} \times 0.3^{2} \omega$
$\omega=\frac{5}{3}=1.67 \mathrm{rad} / \mathrm{s} \simeq 2 \mathrm{rad} / \mathrm{s}$

Q. 2 [7]

Conservation of angular momentum about the fixed axis.
$4600 \times 1+1 \times 80 \times 5=\left(4600+80 \times 1^{2}\right) \times \omega_{\mathrm{f}}$
$\omega_{\mathrm{f}}=32 / 468$
$\Delta \omega=0.068$
$6.8 \times 10^{-2}=7 \times 10^{-2}$
Q. 3 [5625]
$\frac{1}{2} \times 15 \times 2^{2} \times 2=\left(\frac{1}{2} \times 15 \times 2^{2}+2 \times 1^{2}\right) \omega$
$\frac{60}{32}=\omega \Rightarrow \omega=\frac{15}{8} \mathrm{rad} / \mathrm{s}$
K $=\frac{1}{2} \times 32 \times \frac{225}{64}=\frac{225}{4} \mathrm{~J}=56.25 \mathrm{~J}$
Q. 4 [7]

Angular momentum conservation
$2\left(\operatorname{Mv} \frac{\mathrm{~d}}{2}\right)=\left[\frac{\operatorname{Md}^{2}}{12}+2\left(\mathrm{M}\left(\frac{\mathrm{d}}{2}\right)^{2}\right)\right] \omega$
$\Rightarrow \omega=\frac{12 \mathrm{v}}{7 \mathrm{~d}}$
$\mathrm{KE}_{\mathrm{i}}=2\left(\frac{1}{2} \mathrm{Mv}^{2}\right)$
$\Rightarrow \quad \mathrm{KE}_{\mathrm{f}}=\frac{1}{2} \mathrm{I} \omega^{2}=\frac{1}{2}\left(\frac{7 \mathrm{Md}^{2}}{12}\right) \omega^{2}$
$\Delta \mathrm{KE}=\frac{1}{7} \mathrm{Mv}^{2} \Rightarrow \frac{\mathrm{KE}_{\mathrm{i}}}{\Delta \mathrm{KE}}=7$
Q. 5 [5]
$\mathrm{L}_{\text {final }}=0$
$\mathrm{L}_{\text {initial }}=\frac{2}{5} \mathrm{mR}^{2} \omega_{0}-\mathrm{mv}_{0} \mathrm{R}$
$\omega_{0}=\frac{5 \mathrm{v}_{0}}{2 \mathrm{R}} \quad$ or
$\omega_{0}=\frac{5 \times \mathrm{v}_{0}}{2 \times(0.05)}=5 \mathrm{rad} / \mathrm{sec}$.

Q. $6 \quad$ [12]

cons. of $\mathrm{E} \Rightarrow \frac{1}{2}\left(\frac{1}{12} \mathrm{~m} \ell^{2}\right) \mathrm{w}^{2}=\frac{1}{2} \mathrm{mv}^{2}+\frac{1}{2} \mathrm{MV}^{2}$

cons. of $\mathrm{P} \Rightarrow \mathrm{O}=\mathrm{MV}-\mathrm{mv}$
cons. of $\mathrm{L} \Rightarrow\left(\frac{1}{12} \mathrm{~m} \ell^{2}\right) \mathrm{w}=\mathrm{O}+\mathrm{MV} \frac{\ell}{2}$
L around initial mid point of stick
Three egs, there unknown (v, V, M)
E: $\frac{1}{2} \mathrm{Iw}^{2}=\frac{\mathrm{p}^{2}}{2 m}+\frac{\mathrm{p}^{2}}{2 \mathrm{M}}$
$\mathrm{L}: \operatorname{Iw}=P \frac{\ell}{2} \Rightarrow P=\frac{2 \mathrm{Iw}}{\ell}$

$$
\begin{aligned}
& \frac{1}{2} \mathrm{Iw}^{2}=\left(\frac{2 \mathrm{Iw}}{\ell}\right)^{2}\left(\frac{1}{2 \mathrm{~m}}+\frac{1}{2 \mathrm{M}}\right) \\
& \Rightarrow 1=\frac{4 \mathrm{I}}{\ell^{2}}\left(\frac{1}{\mathrm{~m}}+\frac{1}{\mathrm{M}}\right)
\end{aligned}
$$

$\Rightarrow \mathrm{I}=\frac{4\left(\frac{1}{12} \mathrm{~m} \ell^{2}\right)}{\ell^{2}}\left(\frac{1}{\mathrm{~m}}+\frac{1}{\mathrm{M}}\right)$
$\Rightarrow 3=1+\frac{m}{M} \Rightarrow M=\frac{m}{2}$

Q. 7 [5]

Let N be the normal force between the stick and the circle, and let F_{f} be the friction force between the ground andthe circle (see figure). Then we immediately see that the friction force between the stick and the circle is also F_{f}, because the torques from the two friction forces on the circle must cancel.

Looking at torques on the stick around the point of contact with the ground, we have $\mathrm{Mg} \cos \theta(\mathrm{L} / 2)=$ NL, where M is the mass of the stick and L is its length. Therefore, $\mathrm{N}=(\mathrm{Mg} / 2) \cos \theta$. Balancing the horizontal forces on the circle then gives $\mathrm{N} \sin \theta=\mathrm{F}_{\mathrm{f}}+\mathrm{F}_{\mathrm{f}} \cos \theta$. So we have

$$
\mathrm{F}_{\mathrm{f}}=\frac{\mathrm{N} \sin \theta}{1+\cos \theta}=\frac{M g \sin \theta \cos \theta}{2(1+\cos \theta)}
$$

But $M=\rho L$, and from figure. we have $L=R / \tan (\theta / 2)$. Using the identity $\tan (\theta / 2)=\sin \theta /(1+\cos \theta)$, We finally obtain

$$
\mathrm{F}_{\mathrm{f}}=\frac{1}{2} \rho \mathrm{~g} \mathrm{R} \cos \theta .
$$

Q. 8 [25]

Cylinder will topple about right bottom

$m \omega^{2} R$
centrifugal force in disc frame)

$$
\frac{\mathrm{h}}{2} \mathrm{mw}^{2} \mathrm{R} \geq \frac{\mathrm{D}}{2} \mathrm{mg}
$$

$w^{2} \geq \frac{\mathrm{Dg}}{\mathrm{Rh}}$
$\mathrm{w}_{\text {min }}=\sqrt{\frac{\mathrm{Dg}}{\mathrm{Rh}}}$
Q. 9
[6]
$f=m g \times \frac{3 R}{8} \cos 60^{\circ}$

$\mathrm{N}_{2}=\mathrm{f}$
$\mathrm{N}_{1}=\mathrm{mg}$

$$
\begin{aligned}
& \mathrm{f}=\frac{3 \mathrm{mg}}{16} \\
& \mathrm{f} \leq \mu \mathrm{N}_{1} \\
& \mu \geq \frac{3}{16} \quad \Rightarrow 32 \mu=6
\end{aligned}
$$

Q. 10 [84]

$$
\mathrm{m}_{1}=9 \mathrm{gm} ; \mathrm{m}_{2}=42 \mathrm{gm} ; \mathrm{m}_{3}=84 \mathrm{gm}
$$

Q. 11 [100]

$$
\begin{array}{ll}
& \mathrm{T}_{1}=70 \mathrm{~g}+\mathrm{kx} \\
& \mathrm{~T}_{2}=40 \mathrm{~g} \\
& \mathrm{~T}_{1}(0.3)=\mathrm{T}_{2}(0.6) \tag{iii}\\
\Rightarrow \quad & 70 \mathrm{~g}+\mathrm{kx}=80 \mathrm{~g} \\
& \mathrm{kx}=10 \mathrm{~g}
\end{array}
$$

$\therefore \mathrm{x}=1 \mathrm{~m}$
Q. 12
[11]
$\tau=19 \times \frac{20}{100}-12 \times \frac{5}{100}=(3.8-0.6) \mathrm{N}-\mathrm{m}$
$=3.2 \mathrm{~N}-\mathrm{m}$ (anticlockwise)
$\alpha=\frac{\tau}{\mathrm{I}}=\frac{3.2}{32}=0.1 \mathrm{rad} / \mathrm{sec}^{2} \quad ; \therefore \omega=\omega_{0}+\alpha \mathrm{t}$
$\Rightarrow 10 \mathrm{rad} / \mathrm{sec}+0.1 \times 10 \mathrm{rad} / \mathrm{sec} \quad ; \Rightarrow 11 \mathrm{rad} / \mathrm{sec}$.
Q. 13 [50]
$20 \times 0.1-50 \times 0.03=\frac{1}{2} \mathrm{mR}^{2} \alpha$

$2-1.50=\frac{1}{2} \times 2 \times(0.1) 2 \alpha$

$$
0.5=0.01 \alpha
$$

so $\mathrm{rad} / \mathrm{sec}^{2}$ (anticlockwise)

2nd Method

Taking outwords as (+ ive)

$$
\begin{aligned}
& \tau=+20 \times 30 \mathrm{~N}-\mathrm{cm}-50 \times 3 \mathrm{~N}-\mathrm{cm} \\
& =50 \mathrm{~N}-\mathrm{cm}=0.5 \mathrm{~N}-\mathrm{m}
\end{aligned}
$$

$\mathrm{I}=\frac{\mathrm{MR}^{2}}{2}$
$\tau=\mathrm{I} \alpha \quad \Rightarrow \alpha=\frac{\tau}{\mathrm{I}}=\frac{0.5 \mathrm{~N}-\mathrm{m} \times 2}{2 \times(0.1)^{2} \mathrm{kgm}^{2}}$
$=50 \mathrm{rad} / \mathrm{s}^{2}$
Q. 14 [158]
$160=80 \times 1^{2}+60 \times 1^{2}+\frac{M}{12} \times 2^{2}$
$\Rightarrow 200=\frac{M}{3} \Rightarrow M=600 \mathrm{~kg}$

$\mathrm{x}_{\mathrm{c}}=\frac{0 \times 60 \times 60 \times-1+80 \times 1}{60+80+600}=\frac{20}{200}=0.1 \mathrm{~m}$
$\mathrm{I}=\mathrm{I}_{\mathrm{c}}+\mathrm{Mx}^{2} \Rightarrow \mathrm{I}_{\mathrm{c}}=160-200 \times(0.1)^{2}=158 \mathrm{~kg} \mathrm{~m}^{2}$
Q. 15 [55]
$\mathrm{I}_{\mathrm{sys}}=\frac{\mathrm{mr}^{2}}{2}+\left[\frac{\mathrm{mr}^{2}}{2}+\mathrm{m}(2 \mathrm{r})^{2}\right] \times 6$
$=\frac{55}{2} \mathrm{mr}^{2}=55$
Q. 16 [1]

$\mathrm{dI}=\int \mathrm{dm}\left(\mathrm{x}-\frac{\ell}{2}\right)^{2}$
$=\mathrm{r}_{0} \rho_{0} \int_{\ell / 2}^{\ell / 2}\left(1+\frac{\mathrm{x}}{\ell}\right)\left(1-\frac{\mathrm{x}}{\ell}\right)^{2} \mathrm{dx}$
$=\rho_{0} \int_{0}^{\ell}\left(x^{2}+\frac{\ell^{2}}{4}-\ell x+\frac{x^{3}}{\ell}+\frac{x \ell^{2}}{4}-x^{2}\right) d x$
$=\rho_{0}\left[\frac{\ell^{3}}{4}-\frac{3 \ell^{3}}{8}+\frac{\ell^{3}}{4}\right]$
$=\frac{\rho_{0} \ell^{3}}{8}=1 \mathrm{~kg} \mathrm{~m}^{2}$
Q. 17 [120]

$Y=\frac{3}{4} x+\frac{10}{4}, Y=\tan 37^{\circ} x+\frac{10}{4}$
$r_{\perp}=2 m$
$L=m v r_{\perp}=10 \times 6 \times 2=120 \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{sec}$

Q. 18 [27]

$\mathrm{mg}=\frac{\mathrm{mv}^{2}}{\mathrm{R}}$

$\Rightarrow \mathrm{v}=\sqrt{\mathrm{gR}}$
$\frac{1}{2} m v^{2}+\frac{1}{2} \times \frac{2}{5} m R^{2} \omega^{2}=m g(h-2 R)$
$\Rightarrow \frac{7}{10} \mathrm{v}^{2}=\mathrm{g}(\mathrm{h}-2 \mathrm{R})$
$\frac{7}{10} \mathrm{gR}=\mathrm{g}(\mathrm{h}-2 \mathrm{R})$
$\mathrm{h}=\frac{27 \mathrm{R}}{10}=2.7 \times 10$
Q. 19 [5]

$$
\mathrm{F}+\mathrm{f}=\mathrm{ma}
$$

$$
\mathrm{FR}-\mathrm{fR}=\mathrm{I} \cdot / \mathrm{R}
$$

$\therefore \mathrm{F}=\frac{5}{6} \mathrm{ma}$
$\therefore a=\frac{6 F}{5 M}$
Q. 20 [155]
$\mathrm{KE}=\frac{1}{2} \mathrm{mv}_{\mathrm{CM}}^{2}+\frac{1}{2} \mathrm{I}_{\mathrm{CM}} \omega^{2}$

$=\frac{1}{2}(7.8)(5)^{2}+\frac{1}{2}(4.6) \mathrm{R}^{2}\left(\frac{5}{\mathrm{R}}\right)^{2}$
$=\frac{1}{2} \times 25 \times 12.9=155 \mathrm{~J}$

KVPY

PREVIOUS YEAR'S

Q. 1 (C)

By using parallel axis theorem, $\mathrm{I}=\frac{111}{2} \mathrm{mr}^{2}$
Q. 2 (A)
$\tau_{\text {Net }}=\mathrm{F}\left(\frac{\mathrm{R}}{2}\right)+\mathrm{FR}+2 \mathrm{FR}=3.5 \mathrm{FR}$
Q. 3 (C)

Apply conservation of linear momentum $\mathrm{mv}=(\mathrm{m}+\mathrm{M}) \mathrm{v}_{0}$
$m v \sin \theta R=\left(\frac{2}{5} M R^{2}+m R^{2}\right) \omega_{0}$
$\operatorname{mv}\left(\frac{\mathrm{h}-\mathrm{R}}{\mathrm{R}}\right) \mathrm{R}=\frac{(2 \mathrm{M}+5 \mathrm{M})}{5} \omega_{0} \mathrm{R}^{2}$
$(m+M)(h-R) \omega_{0} R=\frac{(2 M+5 M)}{5} \omega_{0} R^{2}$

$$
\frac{\mathrm{h}}{\mathrm{R}}=\frac{10 \mathrm{~m}+7 \mathrm{M}}{5(\mathrm{~m}+\mathrm{M})}
$$

Q. 4 (A)

$$
\begin{aligned}
& \mathrm{mgh}=\frac{1}{2} \mathrm{mv}^{2}+\frac{1}{2} \frac{2}{5} \mathrm{mR}^{2} \frac{\mathrm{v}^{2}}{\mathrm{R}^{2}} \\
& \mathrm{mgh}=\frac{7}{10} \mathrm{mv}^{2} \\
& \mathrm{v}=\sqrt{\frac{10 \mathrm{gh}}{7}}
\end{aligned}
$$

Q. 5 (A)
$2+S$ System lie above edge of 1 .
$\frac{M}{2} y-M\left(\frac{L}{2}-y\right)=0$
$\frac{y}{2}+y=\frac{L}{2}$
$y=\frac{L}{3}$
Now, $1+2+S$ centre of mass will lie above the table
$\frac{3 M}{2}\left(x-\frac{L}{3}\right)+M\left(x-\frac{L}{3}-\frac{L}{2}\right)=0$
$\frac{3 \mathrm{x}}{2}-\frac{\mathrm{L}}{2}+\mathrm{x}-\frac{\mathrm{L}}{3}-\frac{\mathrm{L}}{2}=0$
$\frac{5 \mathrm{x}}{2}=\frac{4 \mathrm{~L}}{3} \Rightarrow \mathrm{x}=\frac{8 \mathrm{~L}}{15}$

Q. 6 (C)

$\mathrm{J}=\mathrm{mv}$
....(i)
where v is the velocity of centre of mass.

After impulse rod get angular velocity ω Angular impulse $=\mathrm{I} \omega$
$\mathrm{J} \times \mathrm{L}==\frac{\mathrm{m}(2 \mathrm{~L})^{2}}{12} \times \omega$

$$
\begin{equation*}
\mathrm{J}=\frac{\mathrm{mL} \omega}{3} \tag{ii}
\end{equation*}
$$

$\omega=\frac{3 \mathrm{~J}}{\mathrm{~mL}}$
from equation (1); $v=\frac{\mathrm{J}}{\mathrm{m}}$
Kinetic energy $=K E=\frac{1}{2} \mathrm{mv}^{2}+\frac{1}{2} \mathrm{I} \omega^{2}$
$\Rightarrow \frac{1}{2} \mathrm{~m} \frac{\mathrm{~J}^{2}}{\mathrm{~m}^{2}}+\frac{1}{2} \times \frac{\mathrm{m} \times 4 \mathrm{~L}^{2}}{12} \times \frac{9 \mathrm{~J}^{2}}{\mathrm{~m}^{2} \mathrm{~J}^{2}}$
$\Rightarrow \quad \frac{\mathrm{J}^{2}}{2 \mathrm{~m}}+\frac{36 \mathrm{~J}^{2}}{24 \mathrm{~m}}$
$\Rightarrow \frac{48 \mathrm{~J}^{2}}{24 \mathrm{~m}} \Rightarrow \frac{2 \mathrm{~J}^{2}}{\mathrm{~m}}$
Q. 7 (B)

If perfect rolling (solid cylinder P)
According to energy conservation law
$\mathrm{mgh}=\frac{1}{2} \mathrm{mv}_{\mathrm{P}}^{2}+\frac{1}{2} \mathrm{I}\left(\frac{\mathrm{V}_{\mathrm{P}}}{\mathrm{R}}\right)^{2}$
Here,
$\mathrm{I} \rightarrow$ moment of intertia, $\mathrm{R} \rightarrow$ Radius
$\mathrm{I}=\frac{\mathrm{mR}^{2}}{2}$
$\omega=\frac{\mathrm{V}_{\mathrm{P}}}{\mathrm{R}}$
$\mathrm{mgh}=\frac{1}{2} \operatorname{mv}_{\mathrm{P}}^{2}+\frac{1}{2} \frac{\mathrm{mR}^{2}}{2} \frac{\mathrm{v}_{\mathrm{P}}^{2}}{\mathrm{R}^{2}}$
$\mathrm{mgh}=\frac{1}{2} \operatorname{mv}_{\mathrm{P}}^{2}\left[1+\frac{1}{2}\right]=\frac{1}{2} \operatorname{mv}_{\mathrm{P}}^{2} \times \frac{3}{2}$
$\operatorname{mgh}=\frac{4}{3} \operatorname{mv}_{\mathrm{P}}^{2}$
....(i)
If sliding without friction
(solid cylinder Q)
According to energy conservation law
$\mathrm{mgh}=\frac{1}{2} \operatorname{mv}_{\mathrm{Q}}^{2}$
$\Rightarrow \quad \mathrm{v}_{\mathrm{Q}}^{2}=2 \mathrm{gh}$
...(ii)
from equation (i) and (ii)
$\frac{\mathrm{v}_{\mathrm{Q}}^{2}}{\mathrm{v}_{\mathrm{P}}^{2}}=\frac{2 \mathrm{gh}}{\left(\frac{4}{3} \mathrm{gh}\right)}=\frac{3}{2}$
$\frac{\mathrm{v}_{\mathrm{Q}}}{\mathrm{v}_{\mathrm{P}}}=\sqrt{\frac{3}{2}}$
(C)

Initial sphere is slipping and finally it start rolling During its motion τ about point of contact is zero.
\therefore Angular momentum of sphere about point of contact remain conserved.

$\mathrm{Iw}=\left(\mathrm{I}+\mathrm{MR}^{2}\right) \omega^{\prime}$
$\frac{2}{5} \mathrm{MR}^{2} \omega=\left(\frac{2}{5} \mathrm{MR}^{2}+\mathrm{MR}^{2}\right) \omega^{\prime}$
$\omega^{\prime}=\frac{2 \omega}{7}$
Q. 9
(A)

When CM of system and Hinged point lie on one line then only system can remain in equilibrium in given position.

$$
\begin{aligned}
& \mathrm{AB}=\ell \cos \theta \\
& \mathrm{AP}=\frac{\ell}{2} \cos \frac{\theta}{2} \\
& \cos \frac{\theta}{2}=\frac{\mathrm{AB}}{\mathrm{AP}} \Rightarrow \mathrm{AB}=\mathrm{AP} \cos \frac{\theta}{2} \\
& \ell \cos \theta=\frac{\ell}{2} \cos ^{2} \frac{\theta}{2}
\end{aligned}
$$

$$
\begin{aligned}
& 2 \cos \theta=\frac{1+\cos \theta}{2} \\
& 4 \cos \theta=1+\cos \theta \\
& 3 \cos \theta=1 \\
& \cos \theta=\frac{1}{3} \Rightarrow \theta=\cos ^{-1}\left(\frac{1}{3}\right)
\end{aligned}
$$

Q. 10 (C)

$\mathrm{P}=\mathrm{P}_{0}-\frac{\mathrm{P}_{0}}{\mathrm{~V}_{0}} \times \mathrm{V}$
$\mathrm{PV}=\mathrm{RT}$
from (1) and (2)
$\frac{R T}{V}=P_{0}-\frac{\mathrm{P}_{0}}{\mathrm{~V}_{0}} \times \mathrm{V}$
$T=\frac{P_{0} V}{R}-\frac{P_{0} V^{2}}{R V_{0}}=\frac{P_{0}}{R}\left[V-\frac{V^{2}}{V_{0}}\right]$
$\mathrm{T}=\frac{\mathrm{P}_{0} \mathrm{~V}}{\mathrm{R}}\left[1-\frac{\mathrm{V}}{\mathrm{V}_{0}}\right]$

Q. 11 (C)

Pole star is a visible star preferably a prominent one that is approximately aligned with the axis of rotation of earth.

Q. 12 (B)

Using concept of COM
$m_{1} r_{1}=m_{2} r_{2}$
$\mathrm{r}_{1}+\mathrm{r}_{2}=2 \mathrm{R}$
$\left(\frac{m_{2}}{m_{1}}+1\right) r_{2}=2 R$
$r_{2}=\frac{2 m_{1} R}{m_{1}+m_{2}}$
$\mathrm{L} \sin \theta_{2}=\mathrm{r}_{2}[\mathrm{R} \ll \mathrm{L}]$
$\theta_{2}=\frac{2 m_{1} R}{\left(m_{1}+m_{2}\right) L}$

Q. 13 (D)

Their axis of rotation is common.
Angular momentum conservation $\mathrm{I}_{1} \omega_{1}-\omega_{2} \mathrm{I}_{2}=\left(\mathrm{I}_{1}+\right.$ $\left.\mathrm{I}_{2}\right) \omega$
$2 \pi(4.25) \mathrm{N}_{1}-2 \pi(1.8) \mathrm{N}_{2}=(4.25+1.80) \mathrm{N}(2 \pi)$
$(4.25 \times 15-1.8 \times 25)=(6.05) \mathrm{N}$
$63.75-45=6.05 \mathrm{~N}$
$\mathrm{N}=3 \mathrm{rev} / \mathrm{s}$.

Q. 14 (A)

$\mathrm{I}_{\mathrm{cm}}+\mathrm{m}(\mathrm{R}+\mathrm{y})^{2}=\mathrm{I}_{3}$
$\mathrm{I}_{\mathrm{cm}}+\mathrm{m}(\mathrm{R}-\mathrm{y})^{2}=\mathrm{I}_{1}$
from (1) \& (2)
$\mathrm{I}_{1}-\mathrm{I}_{3}=\mathrm{m}\left[(\mathrm{R}-\mathrm{y})^{2}-(\mathrm{R}+\mathrm{y})\right]$
$\mathrm{I}_{1}-\mathrm{I}_{3}=\mathrm{m}(2 \mathrm{R})(-2 \mathrm{y})$
$\mathrm{I}_{\mathrm{cm}}{ }^{\prime}+\mathrm{m}(\mathrm{R}+\mathrm{x})^{2}=\mathrm{I}_{4}$
$\mathrm{I}_{\mathrm{cm}}{ }^{\prime}+\mathrm{m}(\mathrm{R}-\mathrm{x})^{2}=\mathrm{I}_{2}$
from (4) \& (5)
$\left(\mathrm{I}_{2}-\mathrm{I}_{4}\right)=\mathrm{m}\left[(\mathrm{R}-\mathrm{x})^{2}-(\mathrm{R}+\mathrm{x})^{2}\right]$
$\mathrm{I}_{2}-\mathrm{I}_{4}=\mathrm{m}[(2 \mathrm{R})(-2 \mathrm{x})]$
$(3)^{2}+(6)^{2}$
$\Rightarrow\left(\mathrm{I}_{1}-\mathrm{I}_{3}\right)^{2}+\left(\mathrm{I}_{2}-\mathrm{I}_{4}\right)^{2}=\left(\mathrm{m}^{2} \times 4 \mathrm{R}^{2} \times 4\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)\right.$
distance of CM from $\mathrm{O}=\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}$

$$
=\frac{1}{4 \mathrm{mR}} \sqrt{\left(\mathrm{I}_{1}-\mathrm{I}_{3}\right)^{2}+\left(\mathrm{I}_{2}-\mathrm{I}_{4}\right)^{2}}
$$

Q. 15 (A)

$\theta_{1}=30^{\circ}, \theta_{2}=60^{\circ}$
using Lami theorem on m_{1}
$\frac{F}{\sin \left(\pi-\theta_{1}\right)}=\frac{m_{1} g}{\sin (\pi-\alpha)}$
$\frac{F}{\sin \theta_{1}}=\frac{m_{1} g}{\sin \alpha}$
using Lami theorem on m_{2}
$\frac{\mathrm{F}}{\sin \left(\pi-\theta_{2}\right)}=\frac{\mathrm{m}_{2} \mathrm{~g}}{\sin (\pi-\alpha)}$
$\frac{\mathrm{F}}{\sin \theta_{2}}=\frac{\mathrm{m}_{2} \mathrm{~g}}{\sin \alpha}$
using (1) \& (2)
$m_{1} \sin \theta_{1}=m_{2} \sin \theta_{2}$
$m_{1} \times \sin 30^{\circ}=m_{2} \sin 60^{\circ}$
$\frac{\mathrm{m}_{1}}{\mathrm{~m}_{2}}=\sqrt{3}=1.7$

Q. 16 (B)

$\frac{1}{2} \mathrm{mV}^{2}+\frac{1}{2} m R^{2}\left(\frac{\mathrm{~V}}{\mathrm{R}}\right)^{2}=\mathrm{mgh}\{$ Usingconservation ofenergy $\}$
$\mathrm{m}\left(\frac{\mathrm{V}^{2}}{2}+\frac{\mathrm{V}^{2}}{2}\right)=\mathrm{mgh}$
$\mathrm{h}=\frac{\mathrm{V}^{2}}{\mathrm{~g}}$
Q. 17 (C)

CM of triangular plate is on the median. If we put a mass say m_{1} on C it will produce torque about A which balance the torque produce mg about A . Thus plate will can be in equilibrium position
$m_{1} g \times 4 \cos 37=m g \times y$
$m_{1} g \times 4 \times \frac{4}{5}=m g \times y$
$\mathrm{m}_{1}=\mathrm{m} \times \mathrm{y} \times \frac{5}{16}$
$\frac{\mathrm{m}_{1}}{\mathrm{~m}}=\mathrm{y} \times \frac{5}{16}$
$y<3$
$\therefore \frac{\mathrm{m}_{1}}{\mathrm{~m}}<1$
$\mathrm{m}_{1}<\mathrm{m}$
$\mathrm{m}_{1}<540 \mathrm{~g}$
from given option Ans. (A)
Q. 18 (A)

For one arm to remain horizontal the net torque about O must be zero (in the position shown in the figure) for this $\mathrm{OP}=\mathrm{OQ}$
$\Rightarrow \mathrm{OQ}=\frac{\ell}{2} \cos \theta$
from figure
$\mathrm{AE}=\mathrm{AC}+\mathrm{CE}$
$\Rightarrow \mathrm{AE}=\ell \cos \theta+\mathrm{OQ}$
$=\frac{\ell}{2}=\ell \cos \theta+\frac{\ell}{2} \cos \theta$
$\Rightarrow \cos \theta=\frac{1}{3}$
hence $\theta=\cos ^{-1}(1 / 3)$
correct Answer is (A)
Q. 19 (D)

$\therefore \mathrm{mvr}=1 \omega$
$\Rightarrow \omega=\frac{\operatorname{mv}\left(\frac{4 \mathrm{a}}{3}\right)}{\frac{8}{3} \mathrm{Ma}^{2}}=\frac{\mathrm{mv}}{2 \mathrm{Ma}}$

$(M+20) g \frac{R}{\sqrt{2}}=m g R$ $M+20=\sqrt{2} \mathrm{~m} ; M=\frac{20}{\sqrt{2}-1}=48.3 \mathrm{~kg}$

Q. 21 (B)

Q. 22 (C)
$m g h=\frac{1}{2} \mathrm{mv}^{2}+\frac{1}{2} \mathrm{I} \omega^{2}$
$\mathrm{I}=\frac{2}{5} \mathrm{mR}^{2}$
$\mathrm{v}=\mathrm{R} \omega$
$\Rightarrow \mathrm{v}=\sqrt{\frac{10 \mathrm{gh}}{7}}=10 \mathrm{~m} / \mathrm{s}$
On elastic collision with block velocity will interchange speed of block after collision is $10 \mathrm{~m} / \mathrm{s}$.
Q. 23 (B)

By conservation of angular momentum

before
after

$$
\mathrm{L}_{\mathrm{i}}=\mathrm{L}_{\mathrm{f}}
$$

about feet on fixed ground

$$
\frac{1.5}{2} \times \mathrm{m} \times 2=\frac{\mathrm{m}(1.5)^{2}}{3} \omega
$$

$\omega=2 \mathrm{rad} / \mathrm{s}$

Q. 24 (B)

The frictional force on the tyres is an external force and is being provided by the road.
Other options i.e. front tyre, rear tyre and brakes comprise the internal parts of bicycle thus forces applied by them will be internal only.
Q. 25 (D)

Mass of bottle $=\mathrm{m} 0$
Length of bottle $=\mathrm{L}$
base Area $=\mathrm{A}=$ pr2
density of shampoo $=r$
mass of shampoo $=$ rfAL

Center of mass of system
$\mathrm{y}=\frac{\mathrm{m}_{0} \frac{\mathrm{~L}}{2}+(\rho \mathrm{fAL})\left(\frac{\mathrm{fL}}{2}\right)}{\mathrm{m}_{0}+\rho \mathrm{fAL}}$
for critical angular displacement, mg will pass through tilted side.

From the diagram $\tan \theta=\frac{r}{y}$
$\tan \theta=\frac{r\left(m_{0}+\rho A L f\right)}{\frac{L}{2}\left(m_{0}+\rho A L f^{2}\right)}$
at $\mathrm{f}=0 \& \mathrm{f}=1$, tipping angle ' θ ' will be same. for very small values of ' f ', we can neglect f^{2} terms
$\Rightarrow \tan \theta=\frac{\mathrm{r}\left(\mathrm{m}_{0}+\rho \text { ALf }\right)}{\frac{\mathrm{L}}{2} \mathrm{~m}_{0}}$

$$
\theta=\tan ^{-1}\left(\frac{\mathrm{r}}{\frac{\mathrm{~L}}{2}} \frac{\left(\mathrm{~m}_{0}+\rho A L f\right)}{\mathrm{m}_{0}}\right)
$$

So if f increases θ will increase.

JEE-MAIN

PREVIOUS YEAR'S

Q. 1
 (1)

$\operatorname{Mg}(\ell \sin \theta)=\frac{1}{2} M V_{0}^{2}+\frac{1}{2} \times \frac{2}{5} M V_{0}^{2}$
$\therefore \quad M g(\ell \sin \theta)=M V^{2} \therefore \ell=\frac{7 \mathrm{v}^{2}}{10 g \sin \theta}$
Q. 2 (1)

$\mathrm{I}=2 \times \frac{2}{5} \mathrm{ma}^{2}+2\left[\frac{2}{5} \mathrm{ma}^{2}+\mathrm{mb}^{2}\right]$
$\mathrm{I}=\frac{4}{5} \mathrm{ma}^{2}+\frac{4}{5} \mathrm{ma}^{2}+2 \mathrm{ma}^{2}=\frac{8}{5} \mathrm{ma}^{2}+\mathrm{mb}^{2}$
Q. 3 (1)

mg
$\mathrm{mg}-\mathrm{T}=\mathrm{ma}$
TR $=\mathrm{I} \alpha$
$\mathrm{a}=\mathrm{R} \alpha$
$m g-\frac{\mathrm{I} \alpha}{\mathrm{R}}=\mathrm{ma}$
$\mathrm{a}=\frac{\mathrm{mg}}{\mathrm{m}+\frac{\mathrm{I}}{\mathrm{R}^{2}}}$
$V=\sqrt{\frac{2 m g h}{m+\frac{I}{R^{2}}}}=\omega R$

$$
\omega^{2}=\frac{2 m g h}{I+\mathrm{mR}^{2}}
$$

Q. 4 [0.8]

$\mathrm{I}_{\mathrm{AB}}=\left[\frac{\frac{\mathrm{M}}{6}\left(\frac{\ell}{6}\right)^{2}}{12}+\frac{\mathrm{M}}{6}\left(\frac{\ell}{6} \frac{\sqrt{3}}{2}\right)^{2}\right]$
$\mathrm{I}_{\text {hexagon }}=6 \mathrm{I}_{\mathrm{AB}}=\mathrm{M}=\left[\frac{\ell^{2}}{12 \times 36}+\frac{\ell^{2}}{36} \times \frac{3}{4}\right]$
$=\frac{6}{100}\left[\frac{24 \times 24}{12 \times 36}+\frac{24 \times 24}{36} \times \frac{3}{4}\right]$
$=\frac{1}{100}[80]=0.8 \mathrm{kgm}^{2}$
Q. 5 [8]

Ratio of time period
$\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}=\frac{1}{8}$
2π
$\frac{\omega_{1}}{\frac{2 \pi}{\omega_{2}}}=\frac{1}{8}$
$\frac{\omega_{1}}{\omega_{2}}=8$
Q. 6 (1)
$\mathrm{I}_{1}=2 \frac{\mathrm{MR}^{2}}{2}$
$\mathrm{I}_{2}=\frac{\mathrm{MR}^{2}}{2}$
$\mathrm{I}_{3}=\frac{\mathrm{MR}^{2}}{2}$
$\mathrm{I}_{4}=\frac{2}{5} \mathrm{MR}^{2}$
Q. 7 (3)

Moment of inertia of point mass
$=$ mass $\times($ Perpendicular distance from axis $)$

Moment of Inertia
$=\mathrm{m}(0)^{2}+\mathrm{m}(l \sqrt{2})^{2}+\mathrm{m}\left(\frac{1}{\sqrt{2}}\right)^{2}+\mathrm{m}\left(\frac{1}{\sqrt{2}}\right)^{2}$
$=3 \mathrm{~m} l^{2}$
Q. 8 [20]
$\alpha=\frac{\tau}{\mathrm{I}}=\frac{\mathrm{F} \cdot \mathrm{R} .}{\mathrm{mR}^{2} / 2}=\frac{2 \mathrm{~F}}{\mathrm{mR}}$
$\alpha=\frac{2 \times 200}{20 \times(0.2)}=10 \mathrm{rad} / \mathrm{s}^{2}$
$\omega^{2}=\omega_{0}{ }^{2}+2 \alpha \Delta \theta$
$(50)^{2}=0^{2}+(10) \Delta \theta \Rightarrow \Delta \theta=\frac{2500}{20}$
$\Delta \theta=125 \mathrm{rad}$
No. of revolution $=\frac{125}{2 \sum} \approx 20$ revolution
Q. 9
[82]

Component along AC
$=100 \cos 35^{\circ} \mathrm{N}$
$=100 \times 0.819 \mathrm{~N}$
$=81.9 \mathrm{~N} \quad \approx 82 \mathrm{~N}$
Q. 10 [20]
$\vec{\tau}=\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{F}}$
$\overrightarrow{\mathrm{r}}=(2 \hat{\mathrm{i}})-(2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+4 \hat{\mathrm{k}})=-3 \hat{\mathrm{j}}-4 \hat{\mathrm{k}}$
$\& \overrightarrow{\mathrm{~F}}=4 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}$

$$
\begin{aligned}
& \vec{\tau}=\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{F}}=\left|\begin{array}{ccc}
\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\
0 & -3 & -4 \\
4 & 3 & 4
\end{array}\right| \\
& \quad=\hat{\mathrm{i}}(-12+12)-\hat{\mathrm{j}}(0+16)+\hat{\mathrm{k}}(0+12) \\
& =-16 \hat{\mathrm{i}}+12 \hat{\mathrm{k}} \\
& \therefore \quad|\vec{\tau}|=\sqrt{16^{2}+12^{2}}=20
\end{aligned}
$$

Q. 11 [3]

$$
\begin{aligned}
& \mathrm{a}=\frac{\mathrm{g} \sin \theta}{1+\frac{\mathrm{I}}{\mathrm{mR}^{2}}}=\frac{\mathrm{g} \sin \theta}{1+\frac{1}{2}}=\frac{2}{3} \mathrm{~g} \sin \theta \\
& \mathrm{~b}=3
\end{aligned}
$$

Q. 12 (4)

We know, $\overrightarrow{\mathrm{L}}=\mathrm{m}(\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{v}})$
with respect to A , we always get direction of $\overrightarrow{\mathrm{L}}$ along +ve z-axis and also constant magnitude as mvr. But with respect to B, we get constant magnitude but continuously changing direction.
Q. 13 [728]

We know, $\theta=\left(\frac{\omega_{1}+\omega_{2}}{2}\right) \mathrm{t}$
Let number of revolutions be N
$\therefore 2 \pi \mathrm{~N}=2 \pi\left(\frac{900+2460}{60 \times 2}\right) \times 26$
$\mathrm{N}=728$
Q. 14 [4]
$M g \sin \theta R=\left(m k_{2}+m R_{2}\right) \alpha$
$\alpha=\frac{\mathrm{Rg} \sin \theta}{\mathrm{k}^{2}+\mathrm{R}^{2}} \Rightarrow \mathrm{a}=\frac{\mathrm{g} \sin \theta}{1+\frac{\mathrm{k}^{2}}{\mathrm{R}^{2}}}$
$\mathrm{t}=\sqrt{\frac{2 \mathrm{~s}}{\mathrm{a}}}=\sqrt{\frac{2 \mathrm{~s}}{\mathrm{~g} \sin \theta}\left(1+\frac{\mathrm{k}^{2}}{\mathrm{R}^{2}}\right)}$
for least time, k should be least \& we know k is least for solid sphere.
Q. 15 (3)
(3) $a=\frac{g \sin \theta}{1+\frac{I}{m R^{2}}}=\frac{5}{7} \times \frac{10}{2}=\frac{25}{7}$
$\mathrm{t}=\frac{2 \mathrm{v}_{0}}{\mathrm{a}}=\frac{2 \times 1 \times 7}{25}=0.56$
Q. 16 (3)

Using conservation of angular momentum
$(\mathrm{Mr} 2) \omega=(\mathrm{Mr} 2+2 \mathrm{mr} 2) \omega^{\prime}$
$\omega=\frac{M \omega}{M+2 m}$
Q. 17 (3)
$\pi=\Rightarrow=\frac{L}{\pi}$
$\mathrm{I}=\mathrm{Mr}^{2}=\frac{\mathrm{ML}^{2}}{\pi^{2}}$
Q. 18 (3)

Let's take solid cylinder is in equilibrium
$T+f=m g \sin 60$
$\mathrm{TR}-\mathrm{fR}=0$
Solving we get
$\mathrm{T}=\mathrm{f}_{\mathrm{req}}=\frac{\mathrm{mg} \sin \theta}{2}$
But limiting friction < required friction
$\mu \mathrm{mg} \cos 60^{\circ}<\frac{\mathrm{mg} \sin 60^{\circ}}{2}$
\therefore Hence cylinder will not remain in equilibrium
Hence $\mathrm{f}=$ kinetic
$=\mu_{\mathrm{k}} \mathrm{N}$
$=\mu_{\mathrm{k}} \mathrm{mg} \cos 60^{\circ}$
$=\frac{\mathrm{mg}}{5}$
Q. 19 [200]
Q. 20 [3]
Q. 21 (2)
Q. 22 [2]
Q. 23 (1)
Q. 24 (2)
Q. 25 [4]
Q. 26 (4)
Q. 27 (3)
Q. 28 [9]
Q. 29 (3)
Q. 30 (4)
Q. 31 [52]
Q. 32 (2)
Q. 33 (3)

$$
\begin{aligned}
& \mathrm{M}=1.5 \mathrm{~kg}, \mathrm{r}=0.5 \mathrm{~m}, \mathrm{~d}=\frac{5}{2} \mathrm{~m} \\
& \mathrm{I}=2\left(\frac{2}{5} \mathrm{Mr}^{2}+\mathrm{Md}^{2}\right)=19.05 \mathrm{kgm}^{2}
\end{aligned}
$$

Q. 34 (4)
Q. $3 \quad$ (C)
L_{0} remains cons. in magnitude and direction but L_{p} changes its direction continously hence L_{p} is variable

by energy conservation $\mathrm{mg} \ell=\frac{1}{2} \mathrm{I} \omega^{2}=\frac{1}{2} \frac{\mathrm{~m} \ell^{2} \omega^{2}}{3}$

$$
\Rightarrow \omega=\sqrt{\frac{6 \mathrm{~g}}{\ell}}
$$

Speed $\mathrm{v}=\omega \mathrm{r}=\omega \ell=\sqrt{6 \mathrm{~g} \ell}$
$\mathrm{v}=\sqrt{6 \times 10 \times .6}=6 \mathrm{~m} / \mathrm{s}$

JEE-ADVANCED

PREVIOUS YEAR'S

Q. 1 [0004]

$$
\begin{aligned}
& 2-\mathrm{f}_{2}=2 \mathrm{a}=0.6 \Rightarrow \mathrm{f}_{2}=1.4 \\
& \tau=\mathrm{I} \alpha \Rightarrow\left(\mathrm{f}_{2}-\mathrm{f}_{1}\right) \mathrm{R}=\mathrm{MR}^{2} \frac{\mathrm{a}}{\mathrm{R}} \\
& 1.4-\mathrm{f}_{1}=\mathrm{Ma}=0.6
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{f}_{1}=0.8=\mu(2)=\frac{\mathrm{P}}{10} \times 2 \\
& \mathrm{P}=4
\end{aligned}
$$

Q. 2 (B)

$$
\begin{aligned}
& \tau=\frac{\mathrm{dL}}{\mathrm{dt}}=\frac{\mathrm{d}}{\mathrm{dt}}(\mathrm{I} \omega) \\
& \tau=\omega \frac{\mathrm{dI}}{\mathrm{dt}}=\omega \frac{\mathrm{d}}{\mathrm{dt}}\left(\mathrm{I}_{\text {rod }}+\mathrm{I}_{\mathrm{m}}\right) \\
& \text { as } \mathrm{I}_{\mathrm{rod}}=\operatorname{com} \Rightarrow \tau=\frac{\mathrm{wd}}{\mathrm{dt}}\left(\mathrm{I}_{\text {insect }}\right)
\end{aligned}
$$

$$
=\omega \frac{\mathrm{d}}{\mathrm{dt}}\left(\mathrm{mr}^{2}\right)=\mathrm{m} \omega\left(2 \mathrm{r} \frac{\mathrm{dr}}{\mathrm{dt}}\right)=2 \mathrm{mr} \omega \mathrm{v}
$$

$$
=2 \mathrm{~m}(\mathrm{vt}) \omega \mathrm{v} \Rightarrow \tau \propto \mathrm{t}
$$

Q. 4 [3]

$\mathbf{I}_{0}=\frac{(4 m)(2 R)^{2}}{2}-\frac{3}{2} m R^{2}=m R^{2}\left[8-\frac{3}{2}\right]$
$=\frac{13}{2} \mathrm{mR}^{2}$

$$
\begin{aligned}
I_{P}=\frac{3}{2}(4 m)(2 R)^{2}-\left[\frac{m R^{2}}{2}\right. & \left.+m\left[(2 R)^{2}+R^{2}\right]\right] \\
& =24{m R^{2}-\frac{11}{2} m R^{2}}=\frac{37}{2} m R^{2} \\
& \frac{I_{P}}{I_{\mathrm{O}}}=\frac{\frac{37}{2}}{\frac{13}{2}}=\frac{37}{13} \approx 3
\end{aligned}
$$

Q. 5 (C)

At $45^{\circ} \mathrm{P} \& \mathrm{Q}$ both land in unshaded region.
The general motion of a rigid body can be considered to be a combination of (i) a motion of its centre of mass about an axis, and (ii) its motion about an instantaneous axis passing through the centre of mass. These axes need not be stationary. Consider, for example, a thin uniform disc welded (rigidly fixed) horizontally at its rim to a massless stick, as shown in the figure. When the disc-stick system is rotated about the origin on a horizontal frictionless plane with angular speed ω, the motion at any instant can be taken as a combination of (i) a rotation of the centre of mass of the disc about the z -axis, and (ii) a rotation of the disc through an instantaneous vertical axis passing through its centre of mass (as is seen from the changed orientation of points P and Q). Both these motions have the same angular speed ω in this case.

Now consider two similar systems as shown in the figure: Case (a) the disc with its face vertical and parallel to $\mathrm{x}-\mathrm{z}$ plane; case (b) the disc with its face making an angle of 45° with $x-y$ plane and its horizontal diameter parallel to x -axis. In both the cases, the disc is welded at point P , and the systems are rotated with constant angular speed ω about the z -axis.

Case (a)

Case (b)
Q. 6 (A)

Consider case (a)

at $\mathrm{t}=\mathrm{T} / 2$ at $\mathrm{t}=3 \mathrm{~T} / 4$

Hence axis is vertical.
For case (b)

Q. 7 (D)

Angular Velocity of rigid body about any axes which are parallel to each other is same. So angular velocity is ω.
Q. 8 (A,B)
$\mathrm{V}_{0}=3 \omega \mathrm{R} \hat{\mathrm{i}}$

$$
\begin{aligned}
& V_{P}\left(3 \omega R-\frac{\omega R}{2} \cos 60^{\circ}\right) \hat{i}+\frac{\omega R}{2} \sin 60 \hat{j} \\
& =\frac{11 \omega R}{4} \hat{i}+\frac{\sqrt{3} \omega R}{4} \hat{i}
\end{aligned}
$$

Q. 9 (D)

$\mathrm{I}_{\mathrm{P}}>\mathrm{I}_{\mathrm{Q}}$
$\mathrm{a}=\frac{\mathrm{g} \sin \theta}{1+\mathrm{I} / \mathrm{MR}^{2}}$
Hence $a_{p}<a_{0}$

$\mathrm{V}_{\mathrm{p}}<\mathrm{v}_{\mathrm{Q}}$
And as $\omega=\mathrm{v} / \mathrm{R}$
So $\omega_{\mathrm{P}}<\omega_{\mathrm{Q}}$

Q. 10 [8]

Angular momentum conservation

$\mathrm{I}_{1} \omega_{1}=\mathrm{I}_{2} \omega_{2}$
$\frac{M R^{2}}{2} \omega_{1}=\left[M R^{2}+2\left(m r^{2}+m r^{2}\right)\right] \omega_{2}$
$=\frac{50(0.4)^{2}}{2} \times 10$
$=\left[\frac{50(0.4)^{2}}{2}+2\left\{(6.25)\left(0.2^{2}+0.2^{2}\right)\right\}\right] \omega_{2}$
$40=[4+1] \omega_{2} \Rightarrow$
$\omega_{2}=8 \mathrm{rad} / \mathrm{s}$

Q. 11 [4]

Applying conservation of angular momentum.

$2 \mathrm{mvr}-\frac{\mathrm{MR}^{2}}{2} \omega=0$
$\omega=\frac{4 m v r}{M R^{2}}$
$\omega=\frac{(4)\left(5 \times 10^{-2}\right)(9)\left(\frac{1}{4}\right)}{45 \times 10^{-2} \times \frac{1}{4}}$
$\omega=4 \mathrm{rad} / \mathrm{s}$

Q. 12 [2]

$\omega=\frac{\int \tau d t}{I}=\frac{\int_{0}^{t} 3 F \sin 30^{\circ} R d t}{I}$

$$
=\frac{3 \cdot(0.5)(0.5)(0.5)(1)}{\frac{1.5(0.5)^{2}}{2}}=2 \mathrm{rad} / \mathrm{s}
$$

Q. 13 [7]

Q. 14 (D)

Q. 15 [6]
Q. 16 (D)

At equilibrium, reaction of the wall on the stick cannot be equal in magnitude to the reaction of the floor on the stick.
Q. 17 (A, B, D)
$\vec{r}(t)=\propto t^{3} \hat{i}+\beta t^{2} \hat{j}$
$\vec{v}=\frac{d \vec{r}}{d t}=3 \propto t^{2} \hat{i}+2 \beta t \hat{j}$
$\Rightarrow(\vec{r})_{t=1}=\frac{10}{3} \hat{i}+5 \hat{j}$
$(\vec{v})_{t=1}=10 \hat{i}+10 \hat{j}$
$(\vec{p})_{t=1}=\hat{i}+\hat{j}$
$\vec{L}=\vec{r} \times \vec{p}=\left(\frac{5}{3}\right) \hat{k}$
$\vec{F}=\stackrel{\rightharpoonup}{v}$
(C) $\mathrm{y}_{\mathrm{cm}}=\frac{\mathrm{L}}{2}(1-\cos \theta)$
(D) midpoint will fall vertically downwards
$\vec{F}=m \frac{d \vec{v}}{d t}$
$(\vec{F})_{t=1}=2 \hat{i}+\hat{j}$
$\vec{\tau}=\vec{r} \times \vec{F}=-\left(\frac{20}{3}\right) \hat{k}$
Hence, (a, b, d)
Q. 18 (A,D)

As the discs are rolling without slipping

$$
\therefore \omega^{\prime} \times 5 a=\omega a \quad \Rightarrow \omega^{\prime}=\frac{\omega}{5}
$$

Angular momentum of system about CM through an axis along rod is
$=\frac{m a^{2}}{2}+\frac{4 m(2 a)^{2}}{2}=\frac{17 m a^{2}}{2}$

Hence, (B) or (a, b)
Q. 19 (A, or AB)
Q. 20 (BCD)

$\mathrm{x}=-\frac{\ell}{2} \sin \theta$
$\mathrm{y}=\ell \cos \theta$
$\frac{y^{2}}{\ell^{2}}+\frac{4 x^{2}}{\ell^{2}}=1$
Path of A is ellipse
(B) torque about point of contact
$\operatorname{mg} \frac{\ell}{2} \sin \theta=\mathrm{I} \alpha$
hence torque $\propto \sin \theta$

Q. 21 (Bonus)

Q. 22 (A)
Q. 23 (B,C)
$\mathrm{v}=\frac{\mathrm{kr}^{2}}{2}$
$\mathrm{F}=-\mathrm{kr}$ (towards centre) $\left[\mathrm{F}=\frac{\mathrm{dv}}{\mathrm{dr}}\right]$

At $\mathrm{r}=\mathrm{R}$,
$\mathrm{kR}=\frac{\mathrm{mv}^{2}}{\mathrm{R}}$ [Centripetal force]
$v=\sqrt{\frac{k R^{2}}{m}}=\sqrt{\frac{k}{m}} R$
$\mathrm{L}=\mathrm{m} \sqrt{\frac{\mathrm{k}}{\mathrm{m}}} \mathrm{R}^{2}$
Q. 24 (A,C)
$\overrightarrow{\mathrm{F}}=(\alpha \hat{\mathrm{t}}+\beta \hat{\mathrm{j}}) \quad[\mathrm{At} \mathrm{t}=0, \mathrm{v}=0, \vec{\tau}=\overrightarrow{0}]$
$\alpha=1, \beta=1$
$\overrightarrow{\mathrm{F}}=\mathrm{t} \hat{\mathrm{i}}+\hat{\mathrm{j}}$
$m \frac{d \vec{v}}{d t}=\hat{t}+\hat{j}$
On integrating
$\mathrm{mv}=\frac{\mathrm{t}^{2}}{2}(\hat{\mathrm{i}}+\hat{\mathrm{tj}}) \quad[\mathrm{m}=1 \mathrm{~kg}]$
$\frac{d \vec{r}}{d t}=\frac{t^{2}}{2} \hat{i}+\hat{\mathrm{j}}$ $[\vec{r}=\overrightarrow{0}$ at $\mathrm{t}=0]$
On integrating
At $\mathrm{t}=1 \sec , \vec{\tau}=(\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{F}})=\left(\frac{1}{6} \hat{\mathrm{i}}+\frac{1}{2} \hat{\mathrm{j}}\right) \times(\hat{\mathrm{i}}+\hat{\mathrm{j}})$
$\vec{\tau}=-\frac{1}{3} \hat{k}$
$\overrightarrow{\mathrm{v}}=\frac{\mathrm{t}^{2}}{2} \hat{\mathrm{i}}+\mathrm{t} \hat{\mathrm{j}}$
$A t=t=1\left(\frac{1}{2} \hat{\mathrm{i}}+\hat{\mathrm{j}}\right)=\frac{1}{2}(\hat{\mathrm{i}}+2 \hat{\mathrm{j}} \mathrm{m} / \mathrm{sec})$
At $=1 \overrightarrow{\mathrm{~s}}=\overrightarrow{\mathrm{r}}_{1}-\overrightarrow{\mathrm{r}}_{0}$

$$
\begin{aligned}
& =\left[\frac{1}{6} \hat{\mathrm{i}}+\frac{1}{2} \hat{\mathrm{j}}\right]=[\overrightarrow{0}] \\
& \overrightarrow{\mathrm{s}}=\frac{1}{6} \hat{\mathrm{i}}+\frac{1}{2} \hat{\mathrm{j}} \\
& |\overrightarrow{\mathrm{~s}}|=\sqrt{\left(\frac{1}{6}\right)^{2}+\left(\frac{1}{2}\right)^{2}} \Rightarrow \frac{\sqrt{10}}{6} \mathrm{~m}
\end{aligned}
$$

Q. 25 [0.75 m]

$a_{c}=\frac{g \sin \theta}{1+\frac{\mathrm{I}_{\mathrm{C}}}{\mathrm{MR}^{2}}}$
$a_{\text {ring }}=\frac{g \sin \theta}{2}$
$\mathrm{a}_{\mathrm{disc}}=\frac{2 \mathrm{~g} \sin \theta}{3}$
$\frac{h}{\sin \theta}=\frac{1}{2}\left(\frac{g \sin \theta}{2}\right) t_{1}^{2} \Rightarrow t_{1} \sqrt{\frac{4 h}{g \sin ^{2} \theta}}=\sqrt{\frac{16 h}{3 g}}$
$\frac{h}{\sin \theta}=\frac{1}{2}\left(\frac{2 g \sin \theta}{3}\right) \mathrm{t}_{2}^{2} \Rightarrow \mathrm{t}_{2}=\sqrt{\frac{3 \mathrm{~h}}{\mathrm{~g} \sin ^{2} \theta}}=\sqrt{\frac{4 h}{g}}$
$\Rightarrow \sqrt{\frac{16 h}{3 g}}-\sqrt{\frac{4 h}{g}}=\frac{2-\sqrt{3}}{\sqrt{10}}$
$\sqrt{\mathrm{h}}\left[\frac{4}{\sqrt{3}}-2\right]=2-\sqrt{3}$
$\sqrt{h}=\frac{(2-\sqrt{3}) \sqrt{3}}{(4-2 \sqrt{3})}=\frac{\sqrt{3}}{2} \Rightarrow h=\frac{3}{4}=0.75 \mathrm{~m}$
Q. 26 (A)
(P) $\overrightarrow{\mathrm{r}}(\mathrm{t})=\alpha t \hat{\mathrm{i}}+\beta \hat{\mathrm{j}}$
$\overrightarrow{\mathrm{v}}=\frac{\mathrm{d} \overrightarrow{\mathrm{r}}(\mathrm{t})}{\mathrm{dt}}=\alpha \hat{\mathrm{i}}+\beta \hat{\mathrm{j}}\{$ constant $\}$
$\overrightarrow{\mathrm{a}}=\frac{\overrightarrow{\mathrm{dv}}}{\mathrm{dt}}=0$
$\overrightarrow{\mathrm{P}}=\mathrm{m} \overrightarrow{\mathrm{v}}$ (remain constant)
$\mathrm{k}=\frac{1}{2} \mathrm{mv}^{2}$ (remain constant)
$\overrightarrow{\mathrm{F}}=\left[\frac{\partial \mathrm{U}}{\partial \mathrm{x}} \hat{\mathrm{i}}+\frac{\partial \mathrm{U}}{\partial \mathrm{y}} \hat{\mathrm{i}}\right]=0$
$\Rightarrow \mathrm{U} \rightarrow$ constant
$\mathrm{E}=\mathrm{K}+\mathrm{U}$
$\frac{\mathrm{d} \overrightarrow{\mathrm{L}}}{\mathrm{dt}}=\vec{\tau}=\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{F}}=0$
$\overrightarrow{\mathrm{L}}=$ constant
(Q) $\overrightarrow{\mathrm{r}}=\alpha \cos (\omega \mathrm{t}) \hat{\mathrm{i}}+\beta \sin (\omega \mathrm{t}) \hat{\mathrm{j}}$
$\overrightarrow{\mathrm{v}}=\frac{\mathrm{d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}=-\alpha \omega \sin (\omega \mathrm{t}) \hat{\mathrm{i}}+\beta \omega \cos (\omega \mathrm{t}) \hat{\mathrm{j}}$
$\overrightarrow{\mathrm{a}}=\frac{\mathrm{d} \overrightarrow{\mathrm{v}}}{\mathrm{dt}}=-\alpha \omega^{2} \cos (\omega \mathrm{t}) \hat{\mathrm{i}}-\beta \omega^{2} \sin (\omega \mathrm{t}) \hat{\mathrm{j}}$
$=-\omega^{2}[\alpha \cos (\omega \mathrm{t}) \hat{\mathrm{i}}+\beta \sin (\omega \mathrm{t}) \hat{\mathrm{j}}]$
$a=-\omega^{2} \overrightarrow{\mathrm{r}}$
$\vec{\tau}=\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{F}}=0\{\overrightarrow{\mathrm{r}}$ and $\overrightarrow{\mathrm{F}}$ are parallel $\}$
$\Delta U=-\int \vec{F} . d r=+\int_{0}^{\mathrm{r}} m \omega^{2} . r . d r$
$\Delta \mathrm{U}=\mathrm{m} \omega^{2}\left(\frac{\mathrm{r}^{2}}{2}\right)$
$\mathrm{U} \propto \mathrm{r}^{2}$
$r=\sqrt{\alpha^{2} \cos ^{2}(\omega t)+\beta^{2} \sin ^{2}(\omega t)}$
r is a function of time (t)
U depends on r hence it will change with time
Total energy remain constant because force is central
(R) $\overrightarrow{\mathrm{r}}(\mathrm{t})=\alpha(\cos \omega \mathrm{t}+\sin (\omega \mathrm{t}) \hat{\mathrm{j}})$
$\overrightarrow{\mathrm{v}}(\mathrm{t})=\frac{\mathrm{d} \overrightarrow{\mathrm{r}}(\mathrm{t})}{\mathrm{dt}}=\alpha[-\omega \sin (\omega \mathrm{t}) \hat{\mathrm{i}}+\omega \cos (\omega \mathrm{t}) \hat{\mathrm{j}}]$
$|\overrightarrow{\mathrm{v}}|=\alpha \omega$ (Speed remains constant)
$\vec{a}=(t)=\frac{d \vec{v}(t)}{d t}=\alpha\left[-\omega^{2} \cos (\omega t) \hat{i}-\omega^{2} \sin (\omega t) \hat{j}\right]$
$=-\alpha \omega^{2}[\cos (\omega \mathrm{t}) \hat{\mathrm{i}}+\sin (\omega \mathrm{t}) \hat{\mathrm{j}}]$
$\vec{\alpha}(\mathrm{t})=-\omega^{2}(\overrightarrow{\mathrm{r}})$
$\vec{\tau}=\overrightarrow{\mathrm{F}} \times \overrightarrow{\mathrm{r}}=0$
$|\overrightarrow{\mathrm{r}}|=\alpha$ (remain constant)
Force is central in nature and distance from fixed point is constant.
Potential energy remains constant
Kinetic energy is also constant (speed is constant)
(S) $\overrightarrow{\mathrm{r}}=\alpha t \hat{\mathrm{i}}+\frac{\beta}{2} \mathrm{t}^{2} \hat{\mathrm{j}}$
$\overrightarrow{\mathrm{v}}=\frac{\mathrm{d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}=\alpha t \hat{\mathrm{i}}+\beta \mathrm{t} \hat{\mathrm{j}}$ (speed of particle depends on ' t ')
$\overrightarrow{\mathrm{a}}=\frac{\mathrm{d} \overrightarrow{\mathrm{v}}}{\mathrm{dt}}=\beta \hat{\mathrm{j}}\{$ constant $\}$
$\overrightarrow{\mathrm{F}}=\mathrm{ma}=\{$ constant $\}$
$\Delta \mathrm{U}=-\int \overrightarrow{\mathrm{F}} \cdot \mathrm{d} \overrightarrow{\mathrm{r}}=-\mathrm{m} \int_{0}^{\mathrm{t}} \beta \hat{\mathrm{j}} \cdot(\alpha \hat{\mathrm{i}}+\beta \hat{\mathrm{t}}) \mathrm{dt}$
$\mathrm{U}=\frac{-\mathrm{m} \beta^{2} \mathrm{t}^{2}}{2}$
$\mathrm{k}=\frac{1}{2} \mathrm{mv}^{2}=\frac{1}{2} \mathrm{~m}\left(\alpha^{2}+\beta^{2} \mathrm{t}^{2}\right)$
$\mathrm{E}=\mathrm{k}+\mathrm{U}=\frac{1}{2} \mathrm{~m} \alpha^{2}$ (remain constant)

Q. 27 (A,C,D)

We can treat contact point as hinged.
Applying work energy theorem
$\mathrm{Wg}=\Delta \mathrm{K}$. E .
$\operatorname{mg} \frac{\ell}{4}=\frac{1}{2}\left(\frac{\mathrm{~m} \ell^{2}}{3}\right) \omega^{2}$
$\omega=\sqrt{\frac{3 \mathrm{~g}}{2 \ell}}$
Radial acceleration of C.M. of $\operatorname{rod}=\left(\frac{\ell}{2}\right) \omega^{2}=\frac{3 \mathrm{~g}}{4}$

Using $\tau=\mathrm{I} \alpha$ about contact point

$$
\begin{aligned}
& \frac{\mathrm{mg} \ell}{2} \sin 60^{\circ}=\frac{\mathrm{m} \ell^{2}}{3} \alpha \\
& \Rightarrow \alpha=\frac{3 \sqrt{3}}{4 \ell} \mathrm{~g}
\end{aligned}
$$

Net vertical acceleration of C.M. of rod $a_{V}=a_{r} \cos 60^{\circ}+a_{t} \cos 30^{\circ}$
$=\left(\frac{3 \mathrm{~g}}{4}\right)\left(\frac{1}{2}\right)+\left(\alpha \frac{\ell}{2}\right) \cos 30^{\circ}$
$=\frac{3 \mathrm{~g}}{4}+\frac{3 \sqrt{3}}{4 \ell}\left(\frac{\ell}{2}\right)\left(\frac{\sqrt{3}}{2}\right)$
$=\frac{3 \mathrm{~g}}{8}+\frac{9}{16}=\frac{15}{16} \mathrm{~g}$
Applying $\mathrm{F}_{\text {net }}=$ ma in vertical direction on rod as system
${ }^{`} \mathrm{mg}-\mathrm{N}=\mathrm{ma}_{\mathrm{v}}=1$
$\Rightarrow \mathrm{N}=\frac{\mathrm{mg}}{16}$
Q. 28 (A)

For $\theta_{\text {max }}$, the football is about to roll, then $\mathrm{N}_{2}=0$ and all forces $\left(\mathrm{Mg}\right.$ and $\left.\mathrm{N}_{1}\right)$ must pass through contact point
$\therefore \cos \left(90^{\circ}-\theta_{\max }\right)=\frac{\mathrm{r}}{\mathrm{R}} \Rightarrow \sin \theta_{\max }=\frac{\mathrm{r}}{\mathrm{R}}$
Q. 29 (B)

For no slipping at the ground,
$\mathrm{V}_{\text {centre }}=\omega \mathrm{R} \quad$ (R is radius of roller)
\therefore Velocity of scale $=\left(\mathrm{V}_{\text {center }}+\omega \mathrm{r}\right) \quad$ [r is radius of axle] Given, $\mathrm{V}_{\text {center }} \cdot \mathrm{t}=50 \mathrm{~cm}$
\therefore Distance moved by scale $=\left(\mathrm{V}_{\text {center }}+\omega \mathrm{r}\right) \mathrm{t}$

$$
=\left(\mathrm{V}_{\text {center }}+\frac{\mathrm{V}_{\text {center }} \mathrm{r}}{\mathrm{R}}\right) \mathrm{t}=\frac{3 \mathrm{~V}_{\text {center }}}{2} \cdot \mathrm{t}=75 \mathrm{~cm}
$$

Therefore relative displacement (with respect to centre of roller) is $(75-50) \mathrm{cm}=25 \mathrm{~cm}$
Q. 30 [25.60]

Initially

$$
\begin{array}{ll}
\mathrm{N}_{1}+\mathrm{N}_{2}=\mathrm{Mg} & \mathrm{~N}_{1}=\frac{4 \mathrm{Mg}}{9} \\
\left(\begin{array}{c}
\left.\tau_{\mathrm{N}}=0\right) \\
\text { aboutcentre } \\
\\
\\
5 \mathrm{~N}_{1}(50) \\
\mathrm{N}_{1}=4 \mathrm{~N}_{2}
\end{array}\right. & \mathrm{N}_{2}=\frac{5 \mathrm{Mg}}{9} \\
\end{array}
$$

$\mathrm{f}_{1_{\mathrm{K}}}=\mu_{\mathrm{K}} \mathrm{N}_{1}$	$\mathrm{f}_{1_{\mathrm{L}}}=\mu_{\mathrm{S}} \mathrm{N}_{1}$
$\mathrm{f}_{1_{\mathrm{K}}}=0.32 \mathrm{~N}_{1}$	$\mathrm{f}_{1_{\mathrm{L}}}=0.4 \mathrm{~N}_{1}$
$\mathrm{f}_{2_{\mathrm{K}}}=0.32 \mathrm{~N}_{2}$	$\frac{\mathrm{f}_{2_{\mathrm{L}}}=0.4 \mathrm{~N}_{2}}{}$

Suppose $x_{L}=$ distance of left finger from centre when right finger starts moving
$\left(\tau_{\mathrm{n}}=0\right)_{\text {about centre }} \Rightarrow \mathrm{N}_{1} \mathrm{x}_{\mathrm{L}}=\mathrm{N}_{2}(40)$
$\mathrm{f}_{\mathrm{K}_{1}}=\mathrm{f}_{\mathrm{L}_{2}} \Rightarrow 0.32 \mathrm{~N}_{1}=0.40 \mathrm{~N}_{2}$
$4 \mathrm{~N}_{1}=5 \mathrm{~N}_{2}$
$\mathrm{N}_{1} \mathrm{x}_{\mathrm{L}}=\frac{4 \mathrm{~N}_{1}}{5}(40)$
$\mathrm{x}_{\mathrm{L}}=32$
Now $X_{R}=$ distance when right finger stops and left finger starts moving
($\tau_{\mathrm{n}}=0$) about centre $\Rightarrow \mathrm{N}_{1} \mathrm{X}_{\mathrm{L}}=\mathrm{N}_{2}\left(\mathrm{x}_{\mathrm{R}}\right)$
$\mathrm{f}_{\mathrm{L}_{1}}=\mathrm{f}_{\mathrm{K}_{2}} \Rightarrow 0.4 \mathrm{~N}_{1}=0.32 \mathrm{~N}_{2}$
$5 \mathrm{~N}_{1}=4 \mathrm{~N}_{2}$
$\frac{4 \mathrm{~N}_{2}}{5}(32)=\mathrm{N}_{2} \mathrm{x}_{\mathrm{R}}$
$\mathrm{x}_{\mathrm{R}}=\frac{128}{5}=25.6 \mathrm{~cm}$
Q. 31 (A, C, D)

by the angular momentum conservation about the suspension point.
$\operatorname{mvx}=\left(\frac{m \ell^{2}}{3}+\mathrm{mx}^{2}\right) \omega$
$\therefore \omega=\frac{\mathrm{mvx}}{\frac{\mathrm{m} \ell^{2}}{3}+\mathrm{mx}^{2}}=\frac{2 \mathrm{vx}}{\ell^{2}+3 \mathrm{x}}$
For maximum $\omega \Rightarrow \frac{\mathrm{d} \omega}{\mathrm{dx}}=0$
$\therefore \mathrm{x}_{\mathrm{M}}=\frac{\ell}{\sqrt{3}}$
So the $\omega=\frac{V}{2 \ell} \sqrt{3}$
Q. 32 (BD)
Q. 33 (ABC)
Q. 34 [49]
Q. 35 (ABD)
Q. 36 [0.18]
Q. 37 [0.16]

