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Circular Motion

EXERCISES

Q.1 (3)

r
r


     = constant [As v and r are constant]

Q.2 (1)
In uniform circular motion (constant angular

velocity) kinetic energy remains constant but due to
change in velocity of particle its momentum varies.

Q.3 (3)

min hr

2 Rad 2 Rad
and

60 min 12 60 min

 
   



min

hr

2 / 60

2 /12 60

 
 

  

Q.4 (4)

2
120 rev / min 120 rad / sec = 4 rad / sec

60


  

Q.5 (1)

100
1rad / s

100


   

r

Q.6 (2)

ˆ ˆ ˆi j k
ˆ ˆ ˆr 3 4 1 18i 13j 2k

5 6 6
        



  
= .

Q.7 (3)

Q.8 (3)

Centripetal acceleration
2

r


 = constant. Direction

keeps changing.

Q.9 (1)

2 2
R R r

2 2
r r R

a R T R R

a r rr T

 
   

 
[As T

r
= T

R
]

Q.10 (3)

Q.11 (4)
Centripetal force is constant in magnitude that means

speed is constant and due to change in direction ve-
locity is variable.

Q.12 (1)

Force is perpendicular to v


Circular Motion

R =

2v

a

 R =

2mv

F

Q.13 (3)
F

C1
= F

C2



2
1

1

mv

r
=

2
2

2

mv

r

1

2

v

v =
1

2

r

r =
1

2

Q.14 (2)

2
2 2 2
c t 2

v
a a a a

r
   



2

c

V
a

r
=

m

a = ar

Q.15 (4)

Q.16 (4)

2 h

rg




l

rgh 50 1.5 9.8
8.57m / s

10

 
    

l

Q.17 (1)

Q.18 (4)

2m
.F mg

r


 

Q.19 (3)
T = tension, W = weight and F = centrifugal force.

Q.20 (2)

T =
2mv

r
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Circular Motion

=
20.5 (4)

1


= 8N

Q.21 (1)

Q.22 (4)

maxv rg 

JEE-MAIN

OBJECTIVE QUESTIONS
Q.1 (3)

Speed v
1

=
2 r

t



v
2

=
2 r

t




1
=

1v 2

r t


 

2
=

2v 2

2r t





1

= 
2


1

2



 =
1

1

Q.2 (3)

r =
20


m, a

t
= constant

n = 2nd revolution
v = 80 m/s


0

= 0, 
f
=

v

r
=

80

20 / 
= 4 rad/sec

 = 2 × 2 = 4
from 3rd equation
2 = 

0
2 + 2

 (4)2 = 02 + 2 ×  × (4)
 = 2 rad/s2

a
t
= r = 2 ×

20


= 40 m/s2

Q.3 (4)
Speed = constant
In uniform circular motion, velocity and acceleration
are constant in magnitude but direction is changes.
Therefore velocity and acceleration both change.

Q.4 (4)


second

=
2

T


=

2

60


rad/sec.

v = .r =
2

60


× 0.06 m/s = 2 mm/s

f iv v v  
  

= 2 v = 2 2  mm/s

Q.5 (3)
Given, 

0
= 0, t = 2 sec.

 = 0, next 2 sec.,  = O
2


1
=

2 21 1
t 2 2

2 2
    


2
=  2 21 1

2 2 2 6
2 2
     

2

1

6
3

2

 
 

 

Q.6 (3)

1 2
1 2

2 2
,

T T

 
   


1

: 
2

= T
2

: T
1

T
1

= 12 × 60 × 60 sec.
T

2
= 60 sec.


1

: 
2
= 60 : ( 12 × 60 × 60)


1

: 
2
= 1 : 720

Q.7 (1)

2

t


 

where t 1Day 24 60 60    second

because earth complete one
revolution is 24 hours about its own axis

2
w rad / s

60 60 24

 
 

  

Q.8 (4)
Given

a = 10m/sec2 
25rad / sec

a =  r

10
r

5
 = 2 m

Q.9 (1)

Given 
0

= 0,  = 2n = 2 ×
210 rad

60 sec

from t = 5
=

0
+  t

210
2 0 5

60
    2

rad
1.4

sec
 

Q.10 (3)

a
c
=

2v

r
, radius is constant in case (a) and increase in

case (b). So that magnitude of acceleration is constant
in case (a) and decrease in case (b).



3

Circular Motion

Q.11 (2)

 

2 2 5
2

c 2 2

4 4 3.14 6400 10
a R R

T 24 60 60

   
  

 

 

2 2 5
2

2 2

4 4 3.14 6400 10
R R

T 24 60 60

   
  

 
=3.4cm/sec2

Q.12 (3)
Given r = 25 cm, n = 2

2 2rad / s    a
c

= 2r

= (4)2 × 0.25 = 162 × 0.25 = 42

Q.13 (1)
Slope should be decreasing

=
d

dt


= tan, if , 

Q.14 (3)

Given

 = 2 + 2

d
2 2

d


 




t 1

d
2 2 4

d 


  



2d
( 2 ).(2 2)

d

 
       


= 12 rad/sec2

Q.15 (2)
We know that

r g

0.64 20 9.8

11.2 m / s

 

  



Q.16 (4)
r = 144 m, m = 16 kg, T

max
= 16 N

T =
2mv

r

v =
Tr

M
=

16 144

16


= 12 m/s

Q.17 (4)
T = m2r
 T1 = 2T = m

1
2 r


1

= 2  = 2 × 5 = 50 ~ 7 rev/min

Q.18 (1)
Uniformly rotating turn table means angular velocity
is constant. New radius is half of the original value.

r´ = 2r and  = constant
v´ = r= 2r = 2v = 20 cm/s
a´ = 2 r = 2r = 2a = 20 cm/s2

Q.19 (3)

For just slip  mg = m2r
here  is double then radius is 1/4th

r´ = 4 cm

Q.20 (2)
We know the Tension provides necessary centripetal
force
So T = m2

Given m = 0.1,  = 2
19




 = 1  T = m2

T = 0.1 ×

2
10

2 1
 
  

 

= 0.1 ×
2

2

100
4 1 40 N   



Q.21 (3)
At t = 0,
a


= g cos ,

R =

2v

a

=

2u

g cos

Q.22 (2)

Let the car looses the contact at angle  with vertical

mg cos  – N =
2mv

R
 N = mg cos  –

2mv

R

During descending on overbridge  is incerese. So
cos  is decrease therefore normal reaction is
decrease.

Q.23 (4)

For circular motion in vertical plane normal reaction
is minimum at highest point and it is zero, minimum
speed of motorbike is -

mg =
2mv

R
 v = gR

Q.24 (1)

T – mg =
2mv

r
(centripetal force at lowest point)

T =
2mv

r
+ mg

Q.25 (2)

For normal reaction at points A and B.
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mg – N =
2mv

r

N = mg –
2mv

r

 N
A

> N
B

and normal reaction at C is N
C

= mg, so
N

C
> N

A
> N

B

Q.26 (3)
Car will not slip when moving with speed v

Q.27 (1)

2m R
f

2mv
mg

R
 

0.5 mg  m×(5)2×R

0.5 10
R

25




R  0.2 m

Q.28 (3)

N

mg Rm 2

Given
R = 10 m

m = 500 kg
N = m2 R + mg

=
2mv

mg
R

 =
500 400

500 10
10


 

= 25 kN

Q.29 (3)

v = Rg tan

R = 10 3 m,  = 30°

=
1

10 3 10
3

  = 10 m/sec = 36 km/hr

Q.30 (2)
Here required centripetal force is provided by friction
force. Due to lack of sufficient centripetal force car
thrown out of the road in taking a turn.

Q.31 (4)

In uniform circular motion

Force is towards centre

Q.32 (2)

Given

d B

2M

A

P =
2


 –1 =

P

2

T = 2M 2d =
2

2

8 Md

P



Q.33 (1)

The maximum bearable Tension

2mv
T

l


T
max

= 10 N,

m = 1, v = ?, l = 1

Tl 100 1

m 1


   = 10 m/s

Q.34 (3)

At highest point velocity is zero.

After word it fall freely.

Q.35 (1)

mg

T

r =  sin 
T sin = mw2
T cos  = mg

Q.36 (3)
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Given that
v = 72 km/h., r = 80 m
We know that

2v 20 20 1
tan

rg 80 10 2


   



1 1
tan

2
  

   
 

Q.37 (3)
We know that

2 rg tan   ( is same)  2 = rg

Case 1
r

1
= 20 m, v

1
= v

r
2

= r , v
2

= 1.1v

 
22

2 2 2

2 2
1 11

1 .1vv r g r

r g rv v
  

1.21 =
r

20
r 24.2m 

JEE-ADVANCED

OBJECTIVE QUESTIONS
Q.1 (C)


A
 t2 

B
 t


A

= k
1

t2 
B

= k
2
t

From given conditon calculate k
1

and k
2

2 =k
1

×   = k
2

× 4
k

1
=2 k

2
= 1/4


A

= 2t2 
B

= t/4

w
A
=

Ad
4t

dt


 w

B
=

Bd 1

dt 4




A

t 5sec

d
20

dt 

 
 

 

B

t 5sec

d 1

dt 4

 
 

 


A

: 
B

= 80 : 1

Q.2 (D)


QP

= 2 – 5 = – 3 rad/s


RP

= 3 – 5 = – 2 rad/s

Time when Q particle reaches at P = t
1

=
/ 2

3




=

1

6

sec.

t
2

=
5 / 2

3




=

5

6
sec.

t
3

=
9 / 2

3




=

3

2
sec.

Time where R particle reaches at P. t
1

=
2




=

1

2
sec.

t
2

=
3

2




=

3

2
sec.

Common time to reaches at P is
3

2
sec.

Q.3 (D)

30°

30°

10m

8m/s

P Q

6m/s

w.r.t to P

4m/s

4 3

3m/sec

3 3

relv 8 sin 30 6 sin 30     = 7 m/s

relv 7
0.7 rad / sec

R 10


   

Q.4 (D)

PQ 2 2(a a cos t) (a sin t)    

t
2asin

2

 
  

 

a

t P

Q

O

Q.5 (i) (A), (ii) (A)

(i) At any moment a
t
= a

r

2

t

v
a

R
 

2dv v
v

ds R
  

dv 1
ds

v R
 
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After integration log v =
S

C
R

  ...(i)

at t = 0, s = 0, v = v
0

C = log v
0

from eq. (1)
0

v S
log

v R

 
  

 

v = v
0

e–S/R

(ii) At any moment a
t
= a

v ra 2 a =
2v

2.
R

Q.6 (A)

It can be observed that component of acceleration

perpendicular to velocity is

a
c

= 4 m/s2

 radius =

2

c

v

a
=

2(2)

4
= 1 m.

Q.7 (B)
F

C
= mk2 rt2

a
C

= k2rt2 =
2v

r

 v = krt

a
t
=

dv

dt
= kr

F
t
= mkr

 P = F


. v
 ( CF


. v
 = 0)

P = tF


. v


= mkr × krt

= mk2r2t

Q.8 (B)

K =
1

2
mv2 = as2  v2 =

22as

m

a
C

=
2v

R
=

22as

mR

a
t
=

dv
v

ds
=

2as

m

a =

2 222as 2as

mR m

   
       

=
2as

m

1/ 22

2

s
1

R

 
  

 

Total force = ma = 2as

1/ 22

2

s
1

R

 
  

 

Q.9 (B)

Given v a s

2

t

vdv a a
a a s.

ds 22 s
  



at

ar

2 2

r

v a s
a

R R
 

r

t

a 2s
tan

a R
  

Q.10 (D)

A

r R

O



 v

sinv

R

r
R cos

2
 

r = 2R cos 
After differentiable

dr d
2R sin

dt dt


    rad

dr
v vsin

dt
  


 

d

dt
(– ve because  decreasing)

v sin  = 2R sin 
v = 2R = 0.4 m/s

2 2
t ra a a    = constant


2

r

v
a a

R
 

 a
t
= 0

 a
r
=

2V

R
= 32 m/s2

Q.11 (C)

30°

v /R2

at
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t3a t 

dV 3tdt 
23t

v
2



2 42

3t.R 1 4t
tan 30

3 3t3t

2

   
 
  
 

 t4 = 4t  t3 = (2)2

 t = 22/3 sec

Q.12 (D)
Given

T

mv /R2

m = 16 kg
R = 144 m

R

2MV
T

R


T
max

= 16 N

max

RT
v

m
  max

16 144
v 12 m / s

16


 

Q.13 (A)
v = r
If r  r/2

 v =
v

2
=

20

2
= 10 cm/sec

Turn table rotating uniformly a
t
= 0

2

r

v
a

R
 ;

2

r

v '
a '

R / 2
 =

20

2
=10 cm/s2

Q.14 (A)

T
1

– T
2

=
M

2
2

L

2
T

1
> T

2

Q.15 (C)
For water does not fall at topmost point of path that
means at topmost point N should be greater than or
equal to zero.

for N = 0, mg =
2mv

r

and for N > 0, mg <
2mv

r

so that mg is not greater than
2mv

r

Q.16 (A)
When train A moves form east to west

mg – N
1

=
2m(v R)

R



 N
1

= mg –
2m(v R)

R



N
1

= F
1

When train B moves from west to east

mg – N
2

=
2m(v R)

R


 N

2
= mg –

2m(v R)

R



N
2

= F
2

F
1

> F
2

Q.17 (A)

mg = m2 R ,  =
g

R

Q.18 (D)
v = 72 km = 20m/s, r = 20m, g = 10 m/s2

To avoid skiding  must be greater than

 = tan–1

2v

rg

 
  
 

= tan–1
20 20

20 10

 
 

 

 = tan–1 (4)

Q.19 (C)
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The time taken to fall on ground =
2 1.8

9.8


=

36

98

velocity at time of string breaks

v =
distance

time
 v = 9.1

98

36

Centripetal acceleration =
2v

R
=

9.1 9.1 98

1.2 36

 



= 187.856 = 188 m/s2

Q.20 (D)
For M to be stationary

T = Mg .... (1)
Also for mass m,
T cos  = mg .... (2)

T sin  =

2mv

sin
.... (3)

dividing (3) by (2)

tan  =

2v

g sin 

M

m




Mg

T Tsin

Tcos

mg

 v =
g

.sin
cos






Time period =
2 R

v


=

2 sin

g
.sin

cos

 








From (1) and (2) cos  =
m

M

then time period = 2 
m

gM



Q.21 (D)
 = const., for all three particles

 =
3

v

T
C

= m2 3
T

B
– T

C
= m22

T
B

= 5 m2
T

A
– T

B
= m2

T
A

= 6 m2
T

C
: T

B
: T

A
:: 3 : 5 : 6

Q.22 (B)
F = kx, T

1
= ka = m2 2a

  =
k

2m

Time period =


2
=

2m
2

k
 = TT

T
2

= 2ka = m23a

  =
2k

3m

Time period =
3m

2
2k

 = T´

T´ =
3

2

 
  
 

T

Q.23 (B)
In uniform circular motion resultant horizontal force
on the car must be towards the centre of circular path.

Q.24 (A)

As we know :

aC =
2v

R
(centripetal acceleration)

From figure : g sin  =
2v

R
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 g . 0v

v
=

2v

R
(since sin i = 0v

v
)

 R  v3

Q.25 (A)
Maximum retardation a = g
For apply brakes sharply minimum distance require
to stop.
0 = v2 – 2gs

 s =

2v

2 g

For taking turn minimum radius is

g =
2v

r
,

 r =

2v

g
, here r is twice of s

so apply brakes sharply is safe for driver.

Q.26 (B)
kx = m2 r

kx

r = + xl

rm 2

l x

kx = m2 (l + x)

2

2

m
x

k m




 



Q.27 (C)
The acceleration vector shall change the component
of velocity u

||
along the acceleration vector.

r =
n

2

a

v

Radius of curvature r
min

means v is minimum and a
n

is
maximum. This is at point P when component of
velocity parallel to acceleration vector becomes zero,
that is u

||
= 0.

u
||

= 0

 R =
2u

a
 =

24

2
= 8 meter..

Q.28 (C)

2d
2Tsin Rd R

2


 

If d is small

2/d 2
d

2/
d

R2

T

2/d

sin
d

2


~–

d

2



2d
2T Rd R

2


 

2 2T R 

Q.29 (D)



T

dx

T+dT
x

l

(T+dT) - T =
m


w2x dx

dT =
2m

. xdx


Integrate with limit x to 

2

x

m
T xdx 





2 2

x

m x
T

2

 
  

 




=

2
2 21 m

[ x ]
2






Q.30 (B)

cosT

sinT

mg

 sinm 2

T for simple pendulum = 2
g



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For conical pendulum
T sin  = m 2 l sin 
 T = m2 l
and T cos  = mg

 T =
mg

cos

Now,
2g

cos
 


l


g

cos
 

l

 T =
2


=

cos
2

g






conical Pendulum

simple Pendulum

T g 1
2 cos

T g 2
    







Ratio = cos

Q.31 (B)
Tangential acceleration = at = gsin

Normal acceleration = an = g cos
at = an
g sin = g cos   = 45°

 vy = vx
uy – gt = ux
20 – (10)t = 10
t = 1 sec.
During downward motion
at = an
vy = – vx
20 – 10 t = – 10  t = 3 sec.

(B) There are other forces on the particle

(D) The resultant of the other forces varies in

magnitude as well as in direction.

Q.2 (A, C, D)
In curved path, may be circular or parabolic.
In circular path speed and magnitude of acceleration
are constant.
In parabolic path acceleration is constant.

Q.3 (A,D)
(A) During a period of 1 year displacement is equal

to zero, so that average velocity is equal to zero.
(B) During a period of one year distance travel is not

equal to zero. So that average speed is not equal
to zero.

(C) During a period of first 6 month of the year change
in velocity not equal to zero. So that average
acceleration is not equal to zero.

(D) In uniform circular motion instantaneous

acceleration is act towards centre of circular path.

Q.4 (B,C,D,E)

v = gr  At AA

N = mg+
2mv

r
=2mg [v gr]

at E

2mv
N mg

r
 

 N = 0  At G and C

×

××

×

× ×

××

r

E
F

G

H

A

B

C

D

N = mg

Q.5 (B,C)

2mv
T mg cos

L
  

Tangential Acceleration = g sin 

Q.6 (A,B,C,D)

60o



/ 2T

T cos 60o

60o

V
T sin 60o

mg

 3 / 2

T 3

2
=

2mv

( 3 / 2)
........(1)

T

2
= mg .......(2)

Hence T = 2 mg , So (B) holds
From (1) & (2) V2 = 3 g/2

 V =
3 9.8 1.6

2

 

Q.1 (B,D)
MCQ/COMPREHENSION/COLUMN MATCHING

JEE-ADVANCED
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 V = 2.8 3 m/s . So (C) hold

a
c

= V2/r =
(3g / 2)

( 3 / 2)




= 3 × g = 9.8 3 m/s2

 (D) holds

t =
2 r

v


=

2 3 / 2

(3g / 2)

 



t = 4/7  (A) holds.

Q.7 (B,C)

a
t
=

dv

dt
= a

friction force on car =

22
2v

m a
r

 
  

 

which is greater than
r

mv2


min

=
2 2 2(v / r) a

g



therefore it is not less than
a

g
for safe turn.

Q.8 (B,C)
There is no friction between road and tyres of car so
that car cannot remain in static equilibrium on curved
section. Whenever speed of car is greater than or less
than v car will slip.

Q.9 (B,D)
When speed of car is 36 km/hr, car can make a turn
without skidding. If speed is less than 36 km/hr than
tendency of slipping is downward so it will slip down.
If speed is greater than 36 km/hr than tendency of
slipping upward so it will slip up. If the car’s turn at
correct speed 36 km/hr

N cos  = mg

N sin  =
2mv

r

N =

2
2 mv

(mg)
r

 
   
 

Q.10 (B)

Q.11 (A)

Q.12 (A)
(10 to 12)
The angular velocity and linear velocity are mutually
perpendicular

 v 


= 3x + 24 = 0 or x = – 8

The radius of circle r =
v


=

5

10
=

1

2
meter

The acceleration of particle undergoing uniform
circular motion is

a v 
  

= ˆ ˆ ˆ ˆ( 8i 6 j) (3i 4 j)    = ˆ50 k

 v 


= 3x + 24 = 0 or x = – 8

Q.13 (D)

mg =
2
0mu

r
 u

0
= gr

Now, along vertical

r =
21

gt
2

 t =
2r

g

Along horizontal; OP = 2u
0
t = 2 2 r

Q.14 (B)
As at B it leaves the hemisphere,

r

u /30

O

h
v



B

N

mg cos

A

 N = 0

mg cos =
2mV

r

mg
h

r
=

2mV

r

mv2 = mgh .............(1)
By energy conservation between A and B

mgr +
1

2
m

2
0u

3

 
 
 

= mgh +
1

2
mv2

Put u
0
and mv2  h =

19r

27
Q.15 (C)

As a
c

=
2v

r
= g cos

 a
t

= g sin 
 a

net
= g

Alternate Solution :
when block leave only the force left is mg.
 a

net
= g.
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Q.16 (B)

effg g a 
  

–a

g
geff

Tension would be minimum when it (tension) is along

effg


tan  =
mg

3
mg

4

=
4

3
  = 53º .

Q.17 (C)

Vmin = effg =
5

g
4
 =

5 g

2


.

Q.18 (C)

Tmax = 6 mgeff (geff =
5

g
4

)

=
15

mg
2

Q.19 (A) q,s (B) p (C) p (D) q,r
From graph (a) = k
where k is positive constant

angular acceleration = 
d

d




= k × k = k2

 angular acceleration is non uniform and directly
proportional to .
 (A) q, s
From graph (b) 2 = k .
Differentiating both sides with respect to .

2
d

d




= k or 

d

d




=

k

2

Hence angular acceleration is uniform.
 (B) p
From graph (c)
  = kt

angular acceleration =
d

dt


= k

Hence angular acceleration is uniform
 (C) p
From graph (d)
  = kt2

angular acceleration =
d

dt


= 2kt

Hence angular acceleration is non uniform and directly
proportional to t.
 (D) q,r

Q.20 (A) q (B) q, s (C) q, s (D) p, s
v = 2t2

Tangential acceleration a
t
= 4t

Centripetal acceleration a
c
=

2v

R


44t

R

Angular speed  =
v

R
=

4t

R
,

tan = t

c

a

a
= 4 3

4tR R

4t t


NUMERICAL VALUE BASED
Q.1 10 m/s

g

37cosU
R

22

C




 6.4 =
 

10

5/4U 22 

Q.2 [0625]

v = R

v' = (R – 5) =
5

R

5R – 25 = R

m
4

25
R  = 6.25 m

Q.3 [0050]

R = 5m, h = 2m, x = 10m, v
g

h2
= x, a

c
=

R

v2



13

Circular Motion

Q.4 [2]
FBD of block in ground frame

Ncos = mg

Nsin = m2r [centripetal force]

 tan = 2r/g

 =
r

tang 
=

h

g
(tan) = 2 × 1 = 2 rad/s

Q.5 [24]

A2 r

2 r

v = 4 rrel 

Q.6 [128 sec.]

 = 11

8

105.1

1014




=

5.1

14
× 10–3

 = 360024

2





t =




t =
5.1

14
× 10–3 ×





2

360024

t =


 6.3814
~ 128 sec.

Q.7 [2]

Given
dt

dp
= cvn


r

mv2

= cvn

On comparing n = 2

Q.8 [0010]
The lift goes down with retardation means acceleration
is upward, let it be a.

T = 2
effg

h
= 2

ag

h



 2 = 2
a10

2


 a = 10

Q.9 [0009]

<  >




dt

dt
=

time

graphunderArea

=
50

]5025[12
2

1


= 9 r/s.

16 41

12

37° 53°
50

t



t0

=9

Q.10 [20 m/s2]

At highest point ac = g

c

22

R

45cosu 
= g [Rc = Radius of curvature]

c

2

R2

u
= g ....(1)

Now when be moves along the same path with constant
speed u, then at top point, since radius of curvature
(Rc) remains same

c

2

R

u
= ac ....(2)
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from (1) and (2)

2

1
=

ca

g

 ac = 2g

ac = 20 m/s2

Q.11 [5]

Tsin = m2sin





l
Tcos

 T

mg

N

T = ml2

Tcos + N = mg

N = mg – ml2cos

N = 1 × 10 –1 × 0.1 ×
2

1
× 100 = 5

Q.12 [50 m/s2]

Angular velocity all aircraft will be same

123

600
600

600

 =
2

2

R

V
=

1200
3600

1000
720

=
6

1
rad/s

a3 = 2R3 =

2

6

1








(1800) = 50 m/s2

Q.13 [5 m]

5 =
2

1
× gt2

5

vt

t = 1 sec.

v =


2
× 2.5 = 5 m/s

S = vt = 5 m

Q.14 [0005]
T = mg

mrmax 
2 = T + µmg

mrmin 
2 = T – µmg

m(rmax + rmin)
2 = 2mg

 rmax + rmin = 2

g2


= 5 m

Q.15 v =
0m

R2)x(k 
= 1100








 

2

d
cosT







 

2

d
cosT

T T

d d








 

2

d
sinT 







 

2

d
sinT

2 /2 2 /2

kx = T = k ( 2r – )

2Tsin 






 

2

d
= (dm)

R

v2

Td = 








r2

m0
r · (2d) ·

r

v2

k (2r –) =
r

vm 2
0





 v2 =




0m

)r2(rk 

Q.16 [0200]

Nb – mg =
R

mv2

N

N m

mg
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Nb = mg +
R

mv2

NT + mg =
R

mv2

NT = mg
R

mv2

 =
3

1















R

mv
mg

2

3

2

R

mv2

=
3

4
mg

v = gR2 = 200020 = 200 m/s

Q.17 [0002]

60°

60°
N2

N1

mg

F

2mg

F













2

R3
m2 2













2

R3
m 2

F – N1 cos 60° = mg .... (1)

N1 sin 60° = m2 










2

R3
... (2)

–––––––––––––––––––––––––

F –
2

Rm 2
= mg .....(A)

N2 cos 60° = F + 2mg ..... (3)

N2 sin 60° = 2m2 










2

R3
.... (4)

––––––––––––––––––––––––––
m2R = F + 2mg ..... (B)
–––––––––––––––––––––––––
–––––––––––––––––––––––––

2

1
m2R = 3mg

R

g6


Q.18 [0003]
As shown in
figure, the forces

force with f = µsN, P = m2r. Thus the conditions for

equilibrium are

mg sin  = P cos  + µsN,

N = mg cos  + P sin 

0

mg


x

y

N

P

Hence mg sin  = P cos  + µs mg cos  + µs P sin ,

giving P = 

















sinµcos

cosµsin

s

s
mg = m2r,,

or 2 = 

















sinµcos

cosµsin

s

s
=

r

g

=






















5

3
·

4

1

5

4
5

4
·

4

1

5

3

4.0

8.9
= 10.3

 = 3.2 rad/s

Q.19 [0010]

f cos  – N sin  = mr

f sin  + N cos  = mg

for limiting condtion f = N

mg

fN

a rc 
2


g

r2
= 



sincos

sincos
=

4.6

2.0

 T = 10 s

Q.20 [120]

In first time interval

T cos  = mg

acting on theblock are theg r a v i t a t i o n a l
force mg, thenormal reactionN, the static
friction f, and thecenrifugal
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T sin  = mg

 T = m 22 ag 

g2 + a2 =
2g

16

52
  a = g

4

3

At t = 4 velocity v = at = 3g

In IInd time interval, string vertical means  = 0

 a = 0

 T = mg

In IIIrd time interval

v = 3g T sin  =
R

mv2

T cos  = mg

solving

T = m

22
2

R

v
g 













 = 5 / 4 mg

 













R

v2

=
4

3
g

 R =

g
4

3

g9 22

= 12g = 120 m

KVPY

PREVIOUS YEAR'S
Q.1 (C)

hr
mw r2

45º

F
r
= m2r cos 45º

where r = Rcos 45º

2

r

m R
F

2




Q.2 (C)

R

V

2R

T =
2 R

V



2

C

V
a

R


2

C

V'
8a

2R


 
2V V'R

8
R 2R



V2 = 16V2

V = 4V

 Time period =
 2 R '

V '



=
 2 2R

4V



R

V


 = (T/2)

Q.3 (B)

r
d





B

A

dr


r



Dr +
dr



rd
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AB


= Direction of resultant velocity

AD


= Direction of tangential velocity

dr r
tan

rd r
   



tan  = 1

 = 45º

Q.4 (A)

60°
x

tan 60° =
L 1

3 tan
R 1/ 3
   

 x =
1 2

1
3 3

 

2 2 2R x L
cos

2Rx

 
 

 R2 +x2 – L2 = 2Rxcos

 2x
dx dx

2R x( sin ) cos
dt dt

 
     

 

dx d
[x R cos ] Rx sin

dt dt


    

dx d
v and

dt dt


   

 v =
Rx sin

x R cos



 

1 2 3
. .

223 3 3
2 1 1 1 3 3.

2 23 3 3





 



v =
2

3



Q.5 (B)

V

U






R

2 2

max

u sin
h R cos

2g


  

for h
max

 maxdh
0

d




Solving we get
2 2

2

u gR

2g 2u


JEE MAIN

PREVIOUS YEAR'S

Q.1 (2)

Particle is in uniform circular motion.

Time Period T = 1.2s360º
30º

0.1s


Now,

F = – kx = –m2x

x
T

4π
x

T

2π
xω

m

F
2

22

2 









kg

N
9.870.36)(

(1.2)

9.874
2






Q.2 (2)

F = 3

C

r
= m2r

 2  4

1

r

   2

1

r

 T r2

Q.3 (4)

N = m2R

N = m

2

2

4
R

T

 
 
 

.....(1)

Given m = 0.2 kg, T = 40 S, R = 0.2 m
Put values in equation (1)
N = 9.859 × 10–4 N

Q.4 (4)
Statement I :

    maxv Rg (0.2) 2 9.8

v
max

= 1.97 m/s
7 km/h = 1.944 m/s
Speed is lower than v

max
, hence it can take safe

turn.
Statement II :

vmax =
tan

Rg
1 tan

   
    
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Circular Motion

=
 

   

1 0.2
2 9.8 5.42 m / s

1 0.2

18.5 km/h = 5.14 m/s
Speed is lower than v

max
, hence it can take safe

turn.
Q.5 (2)

sN =
2mv

R

N =


2

s

mv

R
= mg + F

L

F
L

=


2

s

mv

R
mg

Q.6 (2)
Q.7 (3)

3MV
0

= 2MV
2

+ MV
1

3V
0

= 2V
2

+ V
1

120 = 2V
2

+ 60  V
2

= 30 m/s

2 2 2
1 2 0

2
0

1 1 1
MV 2MV – 3MV

. 2 2 2
1K.E. 3MV
2






=

2 2 2
1 2 0

2
0

V 2V – 3V

3V


=

3600 1800 – 4800

4800



=
1

8

Q.8 (2)

JEE-ADVACNED
PREVIOUS YEAR'S

Q.1 (D)

T sin = m Lsin2

324 = 0.5 × 0.5 × 2

2 =
324

0.5 0.5

 =
324

0.5 0.5

 =
18

0.5
= 36 rad/sec.

Q.2 (A)

v
r
= |2 v sin )|

= |2v sin t)|

Q.3 (B)

2a r

 2

0 /2

v r

R
vdv rdr  

2
2

4

R
v r 


/2 02

2

4

r t

R

dr
dt

R
r





 

  
4

t tR
r e e  

Hence, (B)

Q.4 (D)

2 2ˆˆ ˆ2 ( j)rot rotF m ri mv m ri      


ˆ2 ( j)rotmv  

  ˆ2 ( j)
4

t tR
m e e 

  

 
2

ˆ ˆ ˆj
2

t t
net rot

m R
F F mgk e e mgk       
 

Hence, (D)
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EXERCISES

ELEMENTARYS

Q.1 (3)
W = (force) (displacement) = (force) (zero) = 0

Q.2 (1)

Joule = (Newton) (Metre) =
4 Newton 4Metre

4 4
 =

Joule

16

Hence : 1 Joule = 16 joule (Joule is new unit of
energy)

Q.3 (4)

Stopping distance 2S u . If the speed is doubled then

the stopping distance will be four times.

Q.4 (2)
Work done = Force × displacement
= Weight of the book × Height of the book shelf

Q.5 (4)

ˆ ˆ ˆ ˆ ˆW F.s (5i 6j 4k).(6i 5k) 30 – 20 10units      
 

Q.6 (4)

2t t
s ds dt

4 2
  

2 2 2

2 2

md s 6d t
F ma 3N

dt dt 4

 
    

 

N o w

   
22

2 2 2 2

0 0
0

t 3 t 3
W Fds 3 dt 2 0 3J

2 2 2 4

            
 

Q.7 (2)

11 1
xx x 2

2
1

0 0 0

x 1
W F.dx Cx dx C Cx

2 2

 
   

 
 

Q.8 (3)
When the block moves vertically downward with

acceleration
g

4
then tension in the cord

T

d

g 3
T M g Mg

4 4

 
   

 

Work done by the cord = F.s Fs cos 
 

3 Mg d
Td cos(180º ) d 3Mg

4 4

 
      

 

Q.9 (2)

5 10 15 20 25 30

S(in m)

20

15

10

5

F(in N)

A

B C

E

D F

Work done, W = area under F-S graph from S = 0 m
to x = 20 m

= Area of trapezium ABCD + Area of trapezium
CEFD

   
1 1

10 15 10 10 20 5
2 2

       

= 125 + 75 = 200 J.

Q.10 (2)

m

h

v

Here, mass of the block, m = 3kg
Initial speed of the block, u = 0 (as it starts from rest)
Final speed of the block, v = 4 m/s
Height, h (in this case the radius of quarter circle) =
2m

2 2 21 1 1
K mv mu mv 0

2 2 2
    

21
(3kg)(4m / s) 24J

2
 

The work done by the gravitational force is
W

g
= mgh = (3 kg) (10 m/s2) (2m) = 60 J

If W
f
is the work done by the friction, then according

to work energy theorem,

Work, Power and Energy
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W
g

+ W
f
= K

or W
f
= K – W

g
= 24 J – 60 J = –36 J

As work done against friction is equal and opposite
to work done by the friction,
 The amount of work done against friction is 36 J.

Q.11 (4)

According to work-energy theorem, the work done
by the net force on the body is equal to the change in
its kinetic energy.

i.e., W = K
f
– K

i
.

Q.12 (3)

According to work-energy theorem

W = Change in kinetic energy

2 21 1
FScos mv mu

2 2
  

Substituting the given values, we get

20 × 4 × cos  = 40 – 0

 u 0

or
40 1

cos
80 2

   or
1 1

cos 60º
2

  
   

 

Q.13 (2)
(Applied force - frictional force) × distance = Gain
in kinetic energy.
 (20 – f) × 2 = 10 or 20 – f = 5 or f = 15 N.

Q.14 (3)

Power =
Work

Time


mgh

P
t

 or
mgh

t
P



Substituting the given values, we get

t = 3

200 10 40

10 10

 


= 8s

Q.15 (1)

v
F cos

F

F sin

Power = (component of force in the direction of ve-
locity)

= F cos v

Q.16 (4)

In compression or extension of a spring work is done
against restoring force.

In moving a body against gravity work is done against
gravitational force of attraction.
It means in all three cases potential energy of the
system increases.
But when the bubble rises in the direction of upthrust
force then system works so the potential energy of
the system decreases.

Q.17 (2)
According to the conservation of energy, kinetic en-
ergy at A + potential energy at B

20 mgh mv 0
2


   

or v2 = 2gh = 2 × 9.8 × 0.20 ( h = radius = 20 cm
= 0.2m)

A

B

20 cm

20 cm

According to work - energy theorem,
Work done on the ball = change in kinetic energy

=  
221

mv 0
2

 =
1 2

2 9.8 0.2
2 1000
   

= 3.92 × 10–3 J = 3.92 mJ

Q.18 (2)
In the stable equilibrium, a body has minimum po-
tential energy.

Q.19 (1)
Here V(x) = (x2 – 3x)J

For a conservative field, force, F = –
dV

dx

 F =    2d
x 3x 2x 3 2x 3

dx
       

At equilibrium position, F = 0


3

–2x 3x 0 or x m 1.5m
2

   

Q.20 (4)

Condition for vertical looping
5

h r 5cm
2

 

r = 2 cm
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JEE-MAIN
OBJECTIVE QUESTIONS
Q.1 (2)

Work done by centripetal force is always zero,
because force and instantaneous displacement are
always perpendicular.

W F.s Fs cos Fscos (90º ) 0    
 

Q.2 (3)

25 = 5 × 10 × cos so  = 60º

Q.3 (2)
Work done does not depend on time.

Q.4 (2)

W = (2000 sin 15º) × 10 = 5176.8 J

Q.5 (3)

W = 20 × 10 × 20 × 0.25 = 1000 J

Q.6 (1)

W = F . 2 1( r – r ) = 100 J

Q.7 (3)

S
1

=
1

2
g 12 , s

2
=

1

2
g 22 , S

3
=

1

2
g 32

S
2

– S
1

=
1

2
g 3, S

3
–S

2
=

1

2
g 5

W
1

= (mg) S
1
, W

2
= (mg) (S

2
– S

1
) , W

3
= (mg) (S

3
–

S
2
)

W
1

: W
2

: W
3

= 1 : 3 : 5

Q.8 (1)

T = mg + ma, S =
1

2
at2

W
T

= T × S

=
2m(g a)at

2



Q.9 (4)
Displacement of surface point (where force acts) =
0 hence W = 0

Q.10 (2)

4

5 3

w = mgh, cos  = 4/5
= 10 × 9.8 × 3 = 294 joule

Q.11 (2)
W

a
+ W

c
= K = 0,

W
a

– mg – cos60º
2 2

 
 
 

 
= 0

W
a

=
mg

4


= (0.5) (10)

1

4

 
 
 

=
5

4
J.

Q.12 (3)

F = K
1
x

1
, x

1
=

1

F

K , W
1

=
1

2
K

1
x

1
2 =

2

1

F

2 K

similarly W
2

=

2

2

F

2 K
since K

1
> K

2
, W

1
< W

2

Q.13 (4)
W

1
= work done by spring on first mass

W
2

= work done by spring on second mass
W

1
= W

2
= W (say)

W
1

+ W
2

= U
i
– U

f

2W = 0 –
1

2
Kx2

W = –
2Kx

4

Q.14 (4)

W
F

=
K

ds
S

 
 
 
 = K In s + C Ans : (D)

Q.15 (1)

W =

1

0

Fdx =
1

6
J

Q.16 (3)

Let r


= dx î + dy ĵ , F = 3 x î + 4 ĵ

w =    ˆ ˆ ˆ ˆ3xi 4j . dxi dyj 

=

3m 0

2m 2m

3xdx 4dy  =  
3m2

0

3m

2m

3x
4y

2

 
 

 

=  
23 9 3 2

0 12
2 2

  
   

 
= -4.5 J

Q.17 (3)

A = area under the curve =

v 2

0

dv mv
m v dx

dx 2


100 11

2


=

2mv

2
= mgy

max

 y
max

= 11 m
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Q.18 (2)
2 K.E

man
= K.E.

boy

2 2
ma n boy

1 1 M
2 M v . v

2 2 2
  

V
man

=
boyv

2
...(i)


2 2

man boy

1 1 M
M(v 1) . v

2 2 2
 



2
boy2

ma n

V
(v 1)

2
  

ma nv ( 2 1) m / sec 

Q.19 (1)

KE =
2P

2m
= 1

Q.20 (2)

a =
F

m
, S =

1

2

2F
t

m

 
 
 

,W
F

= FS = F

2Ft

2 m

 
 
 

Q.21 (4)

Area under curve =
1

2
(4) (20) = 40 J

W = work done by resistive force F = – 40 J
– 40 = K

f
– K

i
, K

i
= 50 J, so K

f
= 50 – 40 = 10 J

Q.22 (4)

W = area = 80 =
1

2
(0.1) u2 – 0 ,

so u = 40 m/s

Q.23 (1)

h =
1

2
gt2, W = mgh = mg

2gt

2
, W = K

f
– K

i

2 2mg t

2
= K

f
–

1

2
mu2, K

f
=

1

2
mu2 +

2 2mg t

2

Hence Ans. is (A)

Q.24 (4)

V = O+ aT, a =
V

T
, velocity = O + at =

Vt

T

K.E =
1

2
(m)

2
Vt

T

 
 
 

Q.25 (1)

E =
1

2
mV2,

dE

dV
= mV = p

Q.26 (4)

W
G

=
1

2
mV

f
2 –

1

2
mV

i
2 ,mg h =

1

2
mV

f
2 –

1

2
mV2,

So V
f

is free from direction of V.

Q.27 (1)

V
0

= at
0

 a =
0

0

v

t

 v =
0

0

v

t .t  w= k = k
f
– k

i



2
20

2
0

v1
M .t

2 t

Q.28 (2)

–F x = 0 –
1

2
m (2)2

and – FS = 0 – 2
21

m (2)
2

 
 
 

So
x

S
= 2, S = 2x

Q.29 (4)

F 80 =
1

2
mV2, FS =

1

2
m (2V)2

So
s

80
= 4 ,S = 4 (80)

Q.30 (A)

V
dx

dV
= – Kx,

x

0

2
v

u

2

2

Kx
–

2

V






























V2 – u2 = – Kx2

2

1
mu2 –

2

1
mV2 =

2

1
mK x2

Loss  x2

Q.31 (1)
W

G
+ W

f
= 0 – 0

10 × 1 + W
f
= 0

10 – mg x = 0
10 = (.2) (10) x , x = 5 m

Q.32 (2)
Maximum velocity will be at Mean Position
Where F

net
= 0  mg = Kx

1 × 10 = 2 × 100 × x  x = 5 cm
 h = 20 – 5 = 15 cm

Q.33 (1)
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w =
1

2
k (x

2
2 – x

1
2)

=
1

2
10 (62 – 42) = 100 N cm

= 1 joule

Q.34 (1)

(1) (mg)1 – mg/2 = mv2 /2, v = g ;

d = v 2h / g = g
2(0.5)

g
= 1 m

Q.35 (3)

a

P = F.V = (R + ma) V

Q.36 (4)

Average power =
100 9.8 50

50

 
= 980 J/s

Q.37 (4)
V = 0 + at, F –  mg = ma , F = mg + ma,
P = (mg + ma) at

Q.38 (3)

P = F.v = 50 – 30 + 120 = 140 J

Q.39 (2)
P = TV = 4500 × 2 = 9000 W = 9KW

Q.40 (2)
P

1
= 80 gh/15 , P

2
= 80 gh/20

1

2

P

P =
20

15
=

4

3

Q.41 (3)
Given m = 12000 kg, v = 4 m/sec & t = 40 sec

P
avg

=

21
mv

2
t

=

21
12000 4

2
40

 

= 2400W = 2.4 kW

Q.42 (2)

Q.43 (3)
Follows from definition

Q.44 (3)
Potential energy depends upon positions of particles

Q.45 (1)

U
i
+ 0 = U

f
+

1

2
mv2

U
i

– U
f
=

1

2
mv2

U =
1

2
mv2

m = 2

2 U

v

Q.46 (3)

1

2
mu2 = mgh, u2 = 2gh ....(i)

mg
3h

4

 
 
 

+ K.E. = mgh

K.E. =
mgh

4

K.E.

P.E.
=

mgh / 4

3mgh / 4 =
1

3

Q.47 (2)
W

F
+ W

S
= 0, W

F
– U = 0 , W

F
= U = E

E =
2

1
K

A
x

A
2 , Fx

A
=

1

2
K

A
x

A
2

A

2F

K = x
A

,
A

2F

K =
A

2E

K , K
A

=
22F

E
...(i)

similarly K
B

=

2

B

2F

E
, K

A
= 2K

B


22F

E
=

2

B

2F
2

E

 
 
 

 E
B

= 2E

Alter :
F = K

A
x

A
= K

B
x

B

E
A

=
1

2
K

A
x

A
2

E
B

=
1

2
K

B
x

B
2

2

A A A

B B B

E K x

E K x

  
   
  

2

A

B

E 1 1
2

E 2 2

 
  

 
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Q.48 (4)

21
K(0.3) 10

2
 

20 2000
K

0.09 9
 

work done =
2 21 2000

. [(0.45) (0.3) ]
2 9

 = 12.5 J

Q.49 (1)

u = x2 – 3x, x = 0, x = 2

(u
i
)

x=0
= 0, (u

f
)

x=2
= 4 – 6 = – 2

k = – u = 2 joule

Q.50 (3)

100 =
1

2
K(2cm)2 , E =

1

2
K(4cm)2

so
E

100
= 4 , E = 400 J

 E – 100 = 300 J
Q.51 (1)

1

2
K

2
x2 +

1

2
K

1
x2 =

1

2
m v2

v =
1 2K K

m


x

Q.52 (4)

4 J =
1

2
k (2)2 ...(1)

X J =
1

2
k (10)2

....(2)
from equation (1) & (2)
x = 100 J

Q.53 (3)

mg = Kx , U =
1

2
Kx2 =

2( mg)

2K



Q.54 (3)
For m, N cos  = mg
For M , N sin  = kx

so tan  =
Kx

mg

so
2

1
Kx2 =

2(mg tan )

2K



Q.55 (1)

T = Kx , U =
1

2
Kx2 =

1

2
K

2
T

K

 
 
 

=
2T

2K

Q.56 (1)

mg (h +
3mg

K
) =

1

2
K

2
3mg

K

 
 
 

Q.57 (4)
(W.D)

by friction
+ (W.D)

by spring
= k = k

f
– k

i
=0–k

i

– 0.25 × 1 × 10 × 4 –
1

2
× 2.75 ×42 =

21
– 1 v

2
 

v = 8 m/s

Q.58 (3)

du

dr
= 0, –

3 2

2a b

r r
 = 0, r =

2a

b

Q.59 (2)

x A x B

dU dU
ve, ve

dx dx 

   

So, F
A

= positive , F
B

= negative

Q.60 (3)

F = –
dU

dx
= 0 at B and C

Q.61 (1)

Only in (A), U is minimum for some value of r

Q.62 (1)

W
C

= W
C

+ W
C

= 5 + 2 = 7

P  R P  Q Q  R

Q.63 (1)

U

x




= cos (x + y),

U

y



 = cos (x + y)

F = – cos (x + y) î – cos (x + y) ĵ

= – cos (0 +
4


) î – cos (0 +

4


) ĵ

 | F | = 1

Q.64 (1), (2), (3)

From work energy theorem

W
C

+ W
nC

= K, W
C

= – U, W
nC

– U = K

Q.65 (1)

Area under force vs displacement gives work and area
above x-axis taken as positive while area below x-
axis taken as negative.
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W
net

= 10 × 1 +20× 1- 20 ×1+10×1= 20 erg.

Q.66 (1)

2x2 – 3x – 2 = 0

  
 

3 9 16 3 5
x

4 4
 x = –

1

2
, 2

2

2

dF d u
4x 3

dx dx
    

2

2

d u
3 4x

dx
 



2

12 x
2

d u 1
3 4

2dx 

 
   

 

= (5) > 0 (stable)

Q.67 (1)

(1) mg
2


=

1

2
mv2

v = g

Q.68 (3)

Initially be in contact with the inner wall and later
with the outer wall.

Q.69 (2)

For light rod

v
top

= 0

Using energy conservation

1

2
mv2 + 0 = 0 + mg

v = 2g

JEE-ADVANCED
OBJECTIVE QUESTIONS

Q.1 (C)
f = frictional force = mg sin 
displacement of point of application in t second = vt
()
W

f
= [(mg sin ) sin (180–] (vt) = –mgvt sin2

Q.2 (C)
W

agent
+ W

G
= K = 0

W
agent

= – W
G
, But W

G
is independent of the path

joining initial and final position. W
G

is independent
of time taken.

Q.3 (C)

W.D. = F .ds
 


ˆ ˆ ˆ ˆK [(yi xj).(dxi dyj)]  

K (ydx xdy) 

 

 3,5

1,5
K d(xy) 20K 

Q.4 (B)
F = T, W

F
+ W

G
= 20

W
T

= 20  20 + W
G

= 20  W
G

= 0
which is not possible.

Q.5 (A)
W

f
+ W

G
= K

–mgd – mgh = 0 –
2

1
m v

0
2

gd + gh =
1

2
(v

0
2)

(0.6) (10) d + 10(1.1) = 18 d =
6

7
= 1.1666  1.17

Q.6 (C)
W

G
– W

f
= 0, mgh = mg

h = 

h = (0.2)  =
2.0

5.1
= 7.5

 = 7.5 m = (3 + 3 + 1.5)m

Q.7 (A)
W

S
+ W

f
= K

– U + W
f
= – K

i

– U
f
– mgx = – K

i

2

1
K x2 + mgx =

1

2
mu2

100 x2 + 2(0.1) (50) (10) x = 50 × 4

x2 + x – 2 = 0

x = 1 m

Q.8 (A)

v =  s

ds
s

dt
  ,

s t

0 0

ds
dt

s
  

s2 = t

s = t/2 ....(1)
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W = workdone by all the forces = K

=
1

2
mv2 =

1

2
m 2s =

1

2
m2

2 2t

4

 
  
 

Q.9 (A)

2
1 10

(100)
2 100

 
 
 

=
250 H

(10)
1000 100

   
   
   

, H = 20 cm.

Q.10 (C)

F 2F 3F

M M M2m 1m 1m 2/3m

Apply work energy theorem
W

F
+ W

mg
= K = K

f
- K

i
(K

i
= 0)

Case I : F(2) – mg × 2 = K.E.
Case II : 2F(1) – mg × 1 = K.E.

Case III : 3F
2

3

 
 
 

– mg ×
2

3

 
 
 

= K.E.

In case III K.E. is maximum.

Q.11 (C)
W

R
+ W

G
= 0, – Rd + mg (h + d) = 0

R = mg (1 +
d

h
)

Q.12 (B)
W = Rx F cos 0° (by the force)

60° )
c
o
s

1(



R

= 10 ×
3


× 200

Work done by g = MgR (1 – cos 60°)

=
gRM

2

K.E. = RF –
gRM

2

21 10 10 10
MV 10 200 –

2 3 2

  
  

2v 2 200 – 50
3


  

V = 17.32 m/s

Q.13 (C)
v = at

= 10 3 m/s

In ground frame
W.D. by gravity + W.D. by normal = k

0 + W.D.
N

=
1

2
× 1 × 2(10 3) = 150J

Q.14 (B)

mg/k
M.P.

N.L.

K =
mg

(Given)
a

2
21 1 mg mg

m v k mg
2 2 k k

   
      

   

2 2 2 2
2 2

2 2

1 1 mg m g m g
m v a a

2 2 a mgm g
       

21 1
mv mga mga

2 2
 

v2 = ga

K.E. =
21 mga

mv
2 2



Q.15 (C)

P = FV = m
dv

dt

 
 
 

v

P 
t

0

dt = m

v2

0

v

2

 
 
 

Pt =
2mv

2
, v2 =

2Pt

m
, v =

ds

dt
=

2P

m
t

t

0

2P
ds

m
 dtt

t

0
 ;s  t3/2

Q.16 (B)
On comparing

F  V
F = kV
P = F.V = kV2

 Now 2P = KV2

2 × kv2 = kV2

 V2 = 2V2

V ' 2V
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Q.17 (B)

2dW d.K.E.
(K.E 2t )

dt dt
 


at t 2s

dK.E.
P 4t 8watt

dt 

 
   
 

Q.18 (B)
W

ext
+ W

C
+ W

ps
= K

Q.19 (A)
Total energy = E = K.E + P.E.
When speed of the particle is zero.
i.e., K.E = 0
 U(x) = E

Q.20 (A)
Angle of Inclination

Q.21 (D)
Only Conservative force (mg) is act.
So E.C. is done only two points
(1 and 2)

Q.22 (B)

K.E. + P.E. = constant = C (say)

K – mg (tu sin  –
2

1
gt2) = C

K = mg [tu sin  –
2

1
gt2] + C [= parabolic]

C  0 so answer is (B)

Q.23 (C)

dx

dU
= positive constant

For x < a, F = negative constant and for x > a, F = 0
so, ans. (C)

Q.24 (A)
K.E. + P.E. = positive constant C
E + U = C, E + mgh = C, E = – mgh + C
and U = mgh,
So, answer (A)

Q.25 (C)

E =
2p

2m
, ( E)

1

P

 
 
 

=
1

2m
= constant

Rectangular hyperbola (C)

Q.26 (B)
At x = x

2
, as x increases, F acts along negative x-

direction.
So, answer (C)

Q.27 (B)

mg cos  – N =
2mv

R

m
B

D

O



N
C

A

mg

N = m(g cos  –
2v

R
) ...(i)

 N = 0

 cos  =
2v

Rg
...(ii)

By energy conservation

2 21
mv mg(R Rcos ) v 2Rg(1 cos )

2
      

Using (i) & (ii) cos  =
2

3
height from highest Point = BD = R (1 – cos )

h = R
2

1
3

 
 

 
=

3

R
Ans.

Q.28 (C)

5Rg 5 2.5 10 5 5 10m / s    

 N
2

will be zero in part A, D, C at some point

Q.29 (A)

T

Mg Mv /R2

(v)

T =
2Mv

Mg cos
R

   MgR cos  =
21

Mv
2

 Mgh =
21

Mv
2


2Mgh Mgh

T
R


 (Straight line)

Q.30 (C)

4Mg

Mg N
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2MgR =
21

Mv
2

 2 gR V

2mv
mg N

R
   N = 3 mg

Q.1 (A,C,D)

dW
F

= F.ds
 

, if F


perpendicular to ds


then

dW
F

= 0, sd


is displacement of point of application

of force, v
 =

d s

dt



.

(A), (C), (D) are true.

Q.2 (A, B, C)
Follows from work energy theorem.

Q.3 (A, B, C)
This can be explained by two blocks problem.

Q.4 (A,B)
(A) The spring initially compressed and finally in its
N.L.
(B) Initially stretched and then in its N.L.

Q.5 (B, D)

dW
F

= F.d s = dk > 0  | F | | d s | cos > 0

 0 <  < 90º

p = 2m(K.E.) , K.E.  so p  .

Q.6 (A, B, C)
W = K, 0 = K, k remains constant, speed remains
constant.
W = K, 0 = K, k

Q.7 (B,C,D)

m
N L. .

m

m

M.P.

Kx1

mg

M.P. x
1

=
mg

k

But block further move downward due to inertia. So
descending through distance


2mg

x
k

at M.P. at
x

2
 F

net
= 0 ;

so a = 0

m

mg

kx

a

n

at lower most point

2mg
k mg ma

k

 
  

 
 a = g

Q.8 (B, C)
W = K > 0  K ( = kinetic energy) increases

p = mk2 , p  as k.

Q.9 (B, C)
B and C holds when a ball moves in upward direction.

Q.10 (A,B,C)

Given U = 3x + 4y

Initially particle at rest at (6,4)

So K.E = 0

E
total

= P.E = 3 × 6 + 4 × 4 = 34 J

F =
U Uˆ ˆ– i j
y y

 


  = ˆ ˆ–3i 4 j

ˆ ˆa –3i – 4 j  2| a | 5 m / s

(–3) (6,4)

–4

Let us assume particle crosses y axis after time t

x – 6 =
21

– 3 t
2
 

at y axis  x = 0  t = 2 sec

So y – 4 =
21

– 4 (2) 8
2
   

y = – 4m

(P.E.) at y = – 4 and x = 0

is U
(y = –4, x = 0)

= – 16 J

MCQ/COMPREHENSION/COLUMN MATCHING

JEE-ADVANCED
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So. K.E. = T.E. – U

21
MV 34 ( 16) 50

2
   

V2 = 100  V = 10 m/s

Q.11 (B)

Q.12 (B)
When the particle is released at x = 2 +  it will
reach the point of least possible potential energy (–
15 J) where it will have maximum kinetic energy.


2
max

1
m v

2
= 25  v

max
= 5 m/s

Q.13 (D)

Q.14 (B,D)

M

H=2R

C

B

A

E.C between point A and B

Mg (2R) =
21

MV
2

V 4gR 5gR 

V 4gR 2gR 

So, doesn't complete vertical circle and break off at
a height (R < H < 2R)

Q.15 (A,B,D)

2Mv
N Mg cos

R
  

N
max

at  = 0°
N is zero only
  /2 because in this

N =
2MV

R
– Mg cos 

 

Mg

N


MV /R2

Mg

N

V

MV /R2





Q.16 (C)
To complete vertical circle

speed at point B  5gR

So. E.C.

MgH =
1

M(5gR)
2

H =
5R

2
= 2.5 R

Q.17 (A)

Q.18 (D)

Q.19 (A)

Q.20 (C)
Friction is present
 Mechanical energy is not conserved
But work energy principle conserved
Due to extrenal friction force is working on the block.

Q.21 (C)
The block will come to rest when work done by
friction becomes equal to the change in energy stored
in spring.

Q.22 (B)

m
k

v0

2
0

1
– mv

2

Q.23 (B)

kx

2
0

1
– mv

2

Q.24 (B)

N

Net work done =
2
0

1
– mv

2

Q.25 (B)
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Q.26 (C)
Velocity of block with respect to observer B is zero
so K.E of block = 0

Q.27 (B)
P.E 
Due to +ve work done by N

Q.28 (A) p, r (B) q, s (C) q, r (D) p

The displacement of A shall be less than displacement

L of block B.

Hence work done by friction on block A is positive

and its magnitude is less than mgL.

And the work done by friction on block B is negative

and its magnitude is equal to mgL.

Therefore workdone by friction on block A plus on

block B is negative its magnitude is less than mgL.

Work done by F is positive. Since F>mg, magnitude

of work done by F shall be more than mgL.

Q.29 (A) q, s (B) p, s (C) r, s (D) p, s
(A) The FBD of block is

Angle between velocity of block and normal
reaction on block is obtuse
 work by normal reaction on block is negative.
As the block fall by vertical distance h,

from work energy Theorem
Work done by mg + work done by N = KE of block

 |work done by N| = mgh –
1

2
mv2


1

2
mv2 < mgh

 |work done by N| < mgh
(B) Work done by normal reaction on wedge is
positive
Since loss in PE of block = K.E. of wedge + K.E. of
block
Work done by normal reaction on wedge = KE of
wedge.
 Work done by N < mgh.
(C) Net work done by normal reaction on block and
wedge is zero.
(D) Net work done by all forces on block is positive,
because its kinetic energy has increased.
Also KE of block < mgh
 Net work done on block = final KE of block <
mgh.

NUMERICAL VALUE BASED

Q.1 [21 J]

Q.2 [54 sec]

Q.3 [8]

Applying work energy theorem when block comes

down by x = 10 cm

wmg + wsf + wf = 0

mgx sin  –
1

2
kx2 – mg x cos  = 0

on solving it gives  =
1

8
Ans.

Q.4 [5 m/s]

Along normal their velocity are same.

v
v1



5m


v1 cos  = v sin 

at instant of touching ground.

cos  =
2.5

5
=

1

2
  = 60° 

1v

2
=

v 3

2

wg = k  mg × 2.5 =
2

1
mv1

2  25 =
2

v2
1

+
2

3
×

3

v2
1

 v1 = 5 m/s

Q.5 [9600]

When the spring is compressed by 1.00 m, the sledge

moves further down vertically by

1.00 × sin 30° = 0.50 m.

Conservation of energy (gravitational potential energy

and elastic potential energy) :
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120 × 10 × (3.50 + 0.50) =
200.1k

2

1


k = 9600 Nm–1

Q.6 [60]

0.8 × 30 × 103 × 30 =
2

1
(400)v2 = 60 m/s

Q.7 [1920]

tmax = µN = 0.4 × 20g = 80

fs

20g

2F

N

F = 40 t

Sliding starts when

F = fmax

80t = 80  t = s

  dtfdtF2 k = mv 0

  
3

1

3

1

dt80dtt80 = 20 V

 v = 8m/s

P = v·F


= 40t × 2v = 40 × 3 × 16 = 1920

Q.8 [500]

a =
24

24




g =

3

g

v1 = at1 =
3

g2

v2 = at2 = g

ka =
2

1
M )vv( 2

1
2
2  =

2

1
× 6 










9

g4
g

2
2

=

3

g5 2

=
3

500
J

Q.9 [9000]

– FS =
22 mv

2

1
mv

2

1


v =
m

Fs2
v2  = 9000 m/s

Q.10 [640 kJ]

WDA =
2

1
m1v1

2 = 960 kJ

WDB =
2

1
m2v2

2 = 1600 kJ

–––––––––––––––––––––

WDB – WDA = 640 kJ

Q.11 [25]

U = mgh

g2

sinv
mg

22
0 

  22
0 sinmv

2

1

h
30°

4

1
100 = 25 J

Q.12 [20]

2 2a b = 0.25

 = 22 ba  – l = 0.05 m

2 ×
2

1
k2 =

2

1
mv2

v2 = 2gh

kd2 = mgh

400 × (0.05)2 = 5 × 10–3 × 10 × h  h = 20 m

Q.13 [450]

a =
21

21

mm

)mm(




g =

14

14




g = 6 m/s2

k =
2

1
m1v1

2 +
2

1
m2v2

2 –
2

1
m1u1

2 –
2

1
m2u2

2

= m1gh1 + m2gh2

= (m1 – m2)gh

h = 0 +
2

1
a (2n – 1)

=
2

1
× 6 × (2 × 3 – 1) = 15 m

= 3 × 10 × 15 = 450 J
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Q.14 [75 sec.]

p =
t

mgh
=

t

2410300 
= 960

t =
960

2410300 
= 75 sec.

Q.15 [6]

F = î
x

U




– ĵ

y

U





x

U




= –6x2 + 8xy = 6 × 32 + 8 × 3 × 2

y

U




= + 4x2 – 12y = + 4 × 32 – 12 × 2 = +12

A + B = 6

Q.16 [10]

When the maximum speed is achieved, the propulsive

force is equal to the resistant force. Let F be this

propulsive force, then

F = aV and FV = 600 W

Eliminating F, we obtain

V2 =
a

400
= 100 m2/s2

and the maximum speed on level ground with no wind

v = = 10 m/s

KVPY
PREVIOUS YEAR’S
Q.1 (B)

mgh = 300 × 10 × 6

i

mgh 300 10 6
P 300W

t 60

 
  

P
0

= 750 W

300
100 40%

750
   

Q.2 (D)
According to work-energy principle
W

C
+ W

nc
+ W

ext
= KE

8
2 2
f i

4

1 1
Fdx mv mv

2 2
 

 
22

f

1 1 1 1
3 8 1.5 4 v 3.16

2 2 2 2
        
 

v
f
= 6.8 m/s

Q.3 (A)

A
B

B
CA

According to law of conservation of mechanical
energy
K

i
+ U

i
= K

f
+ U

f

0 + U
i
= 0 + U

f

h
i
= h

f

Point D is at line AB

Q.4 (B)
For lower block +ve lift, kx  mg

mg
x

k
 

m

m

m

Wh

x

W/E theorm

–mg (h + x) +
2 21 1

kh kx 0 0
2 2

 
   

 

 –mgh –
2 2 2 2

2m g 1 1 m g
kh 0

k 2 2 k
  

2 2 2kh 3m g
mgh 0

2 2k
  

2 2 2 2mg m g 3m g
h

k

 


mg 2mg 3mg mg
,

k k k

 
 

3mg
h

k
 

W + mg = kh
W + mg = 3mg
W = 2mg

Q.5 (C)
W

f
+ W

mg
= K.E., ( K.E. = 0)

W
f
= – W

mg

W
f
= – mgh

 Energy dissipated = mgh
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Q.6 (C)

x 0

dU dU
F,

dx dx 

  
  

 
= 0 and

2

2
x 0

d U
0

dx


 
  

 

Q.7 (A)
mgH – 2 mg(d + x) – mgh = 0
h = H – 2(d + x)

Q.8 (B)

21
mv 0 0 1

2
  

v2 = 4 or v = 2 m/s

Q.9 (A)

S mg

mg cos





h

When box is dropped from a height h, then speed at
ground is v, therefore using mechanical energy
conservation

21
mgh mv

2
 ....(1)

when body slides on rough inclined plane, friction
force will also act f = N = mg cos Applying work-
energy theorem

2
1 v

mgh fs m 0
2 3

 
   

 

2
h 1 v

mgh f . m
sin 2 3

 
    

  

h
sin

s

 
  

 

2h 1 mv
mgh mg cos

sin 2 9
  


....(ii)

from equation (i) & (ii)

mgh [1 – cot] =
1

mgh
9

 
 
 

putting  = 45º, cot = 1

1
1

9
 

8

9
 

Q.10 (B)

A

BT1

T2

v = 0

mg cos 

mg

v

Centripetal force at point A :

2

1

mv
T mg 


....(1)

At point B :
T

2
= mg cos  

According to question
T

1
= 4T

2
....(3)

2mv
mg 4 mg cos   


[from equation (1) &

(2)]

 
2mv

mg 4 cos 1  


....(4)

According to conservation of energy between point A
and B

21
Also mv 0 0 mg (1 cos )

2
    

 2mv 2mg 1 cos  

 
2mv

2mg 1 cos  


.....(5)

From equation (4) & (5)
mg (4 cos  – 1) = 2 mg (1 – cos )

4cos 1 2 2cos    

6cos 3  

1
cos

2
  

60º  

Q.11 (C)

K.E. = 0 –
1

2
mv2

K.E. = –
1

2
75 (2)2

 K.E. = – 150 J
Total work done by forces = –150 J
–F. x = – 150 J
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F =
150

x
(avg force)

F =
150

0.25
 F = 600 N (upward direction)

F
R

– mg = F
FR

mg

F
R

= F + mg
F

R
= 600 + 750

F
R

= 1350 N
(resistive force by ground)

Q.12 (B)

500 m P =
mah

time

= out

input

P

P

P =in

outP



=
910

0.5

P
in

= 2 × 109

9mah
2 10

time
 

9
62 10 2

m / t 10
10 500 5


  



= 4 × 105

= 400 m3

Q.13 (C)
at t = 0, x = 0.5

4 2x x 1 1 1 1 1
u

4 2 4 16 4 2 4
      

3
3du 4x 2x

x x
dx 4 2

   

 2du
x x 1

dx
 

du
0

dx
 at point of maxima & minima

x 0; x 1  

2

2

x 0

d u

dx


 
 
 

= – 1 point of maxima

2

2

x 1

d u

dx


 
 
 

= 2 point of minima

+1–1 0

particle will found between (–1,0)

Q.14 (A)

h R

v

From work energy theorem

  21
mg R h mv

2
 

 v 2g R h 

JEE MAIN

PREVIOUS YEAR’S

Q.1 (3)

Tmax = mg +
2mv



& Tmin =
m


(v2 – 4g  ) –mg


5

1
=

2

2

v
g

v
5g



 
 

 






25v


– 25g = g +

2v




24v


= 26g
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v2 =
13

2
g 

v2
min = (5g  / 2)

Q.2 (2)
Given, m = 0.5 kg and u = 20 m/s

Initial kinetic energy (ki) =
1

2
mu2

=
1

2
× 0.5 × 20 × 20 = 100 J

After deflection it moves with 5% of k
i

k
f

=
5

100
× ki 

5

100
× 100

k
f
= 5 J

Now, let the final speed be ‘v’ m/s, then :

k
f
= 5 =

1

2
mv2

v2 = 20

v = 20 = 4.47 m/s

Q.3 (2)
P = C
FV = C

M 
dV

V C
dt


2V

t
2

V t1/2

 1/2dx
t

dt
x t3/2

Q.4 (10)
Using work energy theorem,
Wg = K.E.

(10) (g) (5) =
1

2
(10)v2 – 0

v = 10 m/s

Q.5 (1)

U = C
r

F =   
2

dU C

dr r


2mv

F
r


2

2

C mv

rr

2 1v
r

Q.6 (6)
Let’s say the compression in the spring by : y.
So, by work energy theorem we have

 2 21 1
mv ky

22

  
m

y v
k

  
4

y 10
100

y = 2m
final length of spring
= 8 – 2 = 6m

Q.7 (2)

Q.8 [450]

Q.9 (2)

Q.10 (4)

Q.11 (1)
Work done = Change in kinetic energy

W
mg

+ W
air-friction

=    
2 21 1

m .8 gh – m 0
2 2

W
air-friction

=
.64

2
mgh – mgh = –0.68mgh

Option (1)

Q.12 [400]

Q.13 (1)

Q.14 [40]

Q.15 [16]
Work = K.E.

W
friction

+ W
Spring

= 0 –
21

mv
2

2 2
Spring

90 1 1
– mv W mv

100 2 2

 
   

 

2
Spring

10 1
W mv

100 2
  
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2 21 1
– kx – mv

2 20


 

 

2

5

2

40000 20
k 16 10

10 1


   



JEE-ADVANCED
PREVIOUS YEAR'S
Q.1 (D)

suppose x = r cos
y = r sin

force on particle is  3

K ˆ ˆr cos i r sin j
r

  

force is in radial direction so work done by this
force along given path (circle) is zero.

Q.2 [5]
E = P.t = 0.5W × 5s = 2.5 J

=
1

2
mv2  v = 5 m/s

Q.3 [5]
W

F
+ W

g
= K

f
- K

i

18×5 + 1g (-4) = K
f

90 - 40 = K
f

K
f
= 50J = 5×10J

Q.4 [0.75]

F =  ˆ ˆyi 2 xj  

W
AB

=    ˆ ˆ1i. . 1i. 1J  

ˆF –1i 2 xj
ˆS 1i

   
 

  





Similarly,
W

BC
= 1J

W
CD

= 0.25 J
W

DE
= 0.5 J

W
EF

= W
FA

= 0 J
 New work in cycle = 0.75 J

Q.5 [A, D]
By the energy conservation (ME) between bottom
point and point Y

2 2
0 1

1 1
mv mgh mv

2 2
 

2 2
1 0v v 2gh   ......(i)

Now at point Y the centripetal force provided by the
component of mg

2
1mv

mgsin 30º
R

 

2
1

gR
v

2
 

from (i)

2
0

gR
v 2gh

2
 

At point x and z of circular path, the points are at same
height but less then h. So the velocity more than a
point y.

So required centripetal
2mv

r
 is more.
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Center of Mass

ELEMENTARY
Q.1 (4)

self explainatory

Q.2 (2)
Centre of mass is nearer to heavier mass

Q.3 (3)
r = 1.27 Å

1 1 2 2
cm

1 2

m r m r
r

m m





Since centre of mass cannot go beyond bond length

cm

0 35.5 1.27 35.5 1.27
r

35.5 10 36.5

  



= 1.24 Å

Q.4 (3)

Q.5 (2)

Q.6 (2)

Q.7 (2)
Q.8 (4)
Q.9 (1)

Body at rest may possess potential energy.

Q.10 (4)

a
cm

=
1 2

1 2

m g m g

m m



 = g

Q.11 (1)
vector sum of internal forces on system is zero.

Q.12 (2)

Q.13 (1)

Q.14 (3)

P = 2mE

 P m (if E = const.)


1 1

2 2

P m

P m


Q.15 (2)
Q.16 (3)

3m

At rest

Before explosion

m

m

m

v

V

v

After explosion

Initial momentum of 3m mass = 0
…(i)
Due to explosion this mass splits into three fragments
of equal masses.

Final momentum of system = ˆ ˆmV mvi mvj 


…(ii)
By the law of conservation of linear momentum

ˆ ˆmV mvi mvj 0  


 ˆ ˆV v(i j)  


Q.17 (4)
Q.18 (1)

Area of F-t curve = A = Impulse.
Impulse = dP = A = mv – 0

 v =
A

M
.

Q.19 (1)

Q.20 (1)
If mass = m
first ball will stop
 v = 0
so% K.E. = 0 (min)
In other cases there will be some kinetic energy
(K.E. can't be negative)

Q.21 (3)
According to law of conservation of linear momentum
both pieces should possess equal momentum after
explosion. As their masses are equal therefore they
will possess equal speed in opposite direction.

Q.22 (3)

0.4kg
vB

A B
vA

0.2kg

Initial linear momentum of system = A A B Bm v m v
 

= 0.2 × 0.3 + 0.4 × v
B

Finally both balls come to rest
 final linear momentum = 0
By the law of conservation of linear momenum
0.2 × 0.3 + 0.4 × v

B
= 0

 B

0.2 0.3
v 0.15 m / s

0.4


   
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Q.23 (1)

v
1

=
1 2 1 2 2

1 2 1 2

(m – em )u m (1 e)u

m m m m




 

=
1(m – e2m)u 2m(1 e) 0

m 2m m 2m

 


 
= 0

 0 = m – e2m
 e = 1/2

Q.24 (1)

M

u1=6m/s

m

u2=4m/s

1 2 2 2
1 1

1 2 1 2

m m 2m u
v u

m m m m

 
  

  

Substituting m
1
= 0, v

1
= –u

1
+ 2u

2

v
1
= –6 + 2(4) = 2 m/s

i.e. the lighter particle will move in original direction with
the speed of 2 m/s.

Q.25 (2)
Impulse = change in momentum
mv

2
– mv

1
= 0.1 × 40 – 0.1 × (–30)

Q.26 (4)
By the conservation of momentum

v 80)7()40(1040  v 5.1 m/s

Q.27 (4)
Due to elastic collision of bodies having equal mass,
their velocities get interchanged.

Q.28 (3)
Initial momentum of the system = mv – mv = 0
As body sticks together
 final momentum = 2mV

By conservation of momentum 2mV = 0
 V=0

Q.29 (2)
By momentum conservation before and after collision.

m
1
V + m

2
× 0 = (m

1
+ m

2
) v


1

1 2

m
v V

m m




i.e. Velocity of system is less than V.

JEE-MAIN

OBJECTIVE QUESTION
Q.1 (4)

Centre of mass is a point which can lie within or
outside the body.

Q.2 (1)

5 5

6C B

A

y
cm

=
0 (2 ) 2 5 2

2( )6 2 5

    

    =
10

11

4 –
10

11
=

34

11

Q.3 (4)
A1 = 2r × r = 2r2

A2 =
2r

2



x1 =
r

2

x2 =
4r

3

xcm =

2
2

2
2

r r r
2r –

2 2 3
r

2r –
2

 
 




=

3

2

2
r 1 –

2r3

4 – 3[4 – ]
r

2

 
   

  
  

Q.4 (4)
centre of mass is at a height of h/4 from base.

Q.5 (3)

Q.6 (3)
Centre of mass of two particle system lies on the line
joining the two particles

Q.7 (3)

Q.8 (2)
ycm = 0

1

8
× 0.14 +

7

8
×h = 0


7h

8
= –

0.14

8
 h = –0.02 below x-axis.

Q.9 (2)
Let x be the displacement of man. Then displacement
of plank is L – x.
For centre of mass to remain stationary
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M

3
(L – x) = M . x

 x =
L

4

M

L–x x

M/3

Q.10 (1)

netF


= 0

so coma


= 0

A B

100g 250g

10cm/sec
2

1 1 2 2m a m a
 

= 0

100×a1 + 250 (–10) = 0
a1 = 25 cm/sec2 east

Q.11 (3)
Centre of mass hits the ground at the position where
original projectile would have landed.

m COM 2m

R/2 x1

m.R

2
= 2mx1 x1 =

R

4

Distance = R +
R

4
=

5R

4

Q.12 (1)

vcm =

1
1 2 6

102 m / sec
1 1/ 2 3

  



.

Q.13 (4)

vcm =
1 1 2 2

1 2

m v m v

m m





 vcm =
ˆ ˆm(2i) m(2j)

2m



acm =
m(i j) m(0)

2m

 
.

vcm has same direction as of acm
 straight line.

Q.14 (3)

a =
(nm – m)

nm m
g

=
(n –1)

(n 1) g

a1 = a2 = a

acm =
1 2nma – ma

(nm m) =
(n –1)

a
(n 1)




nm

m

a a

acm =

2

2

(n –1)
g

(n 1)
.

Q.15 (4)

Q.16 (2)

Q.17 (2)

Q.18 (1)
vcm = 0
mvB + m (vB + vrel) = 0

 vB =
relmv

–
m M

– sign means baloon moves downward

Q.19 (3)
Centre of mass will not move in horizontal direction.
Let x be the displacement of boat.
80 (8 – x) =200x
640–80x=200x
x=2.3m
Now, Required
distance from the shore.
= 20 – (8 – x)

x 8–x

20m

= 20 – (8 – 2.3)
= 20 – 5.7
=14.3m
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Q.20 (3)
C1 will move but C2 will be stationary with respect to
the ground.

Q.21 (2)

Velocity become double.

Q.22 (1)
500 × 10 = 550 × v

v =
500

55
=

100
m / s

11
.

Q.23 (2)
Vcom = V cos

V cos = 2–m0 mv

2m



 v2 = 2V cos 

vcos vcos

1 2

Q.24 (4)
Speed is constant so K.E.  Constant
Gravitational potential energy change.

Momentum = vm


 Direction of v


changes

 Momentum changes

Q.25 (4)

2P

2m
= K.E.

ln
2P

2m
= ln K.E.

2ln P – ln (2m) = ln K.E.
So the graph between lnp & lnk is straight line with
intercept.

Q.26 (2)
Here net force = 0
means momentum is conserved.
pi = pf

0 = 1 2p p
 

 1 2p p 
 

K.E. =
2p

2m


1

2

K

K =
2

1

m

m

Q.27 (1)
According to Newton's second law of motion.

F


=
dp

dt



If
netF


= 0

then p


= conserved

Q.28 (3)
Pi = mv1 + mv2
Pf = (m + M) v

Pi = Pf  v =
1 2mv Mv

(m M)





By energy consarvation

1

2
mv1

2 +
1

2
Mv2

2 =
1

2
(M + m) v2 +

1

2
kx2

 mv1
2 + Mv2

2 = (M + m)

2
21 2

2

(mv Mv )
kx

(M m)






solving x = (v1 –v2)
mM

(M m)k
.

Q.29 (1)

m v

wall

Initial momentum of body = mv
& final momentum of body = – mv
Change in momentum = 2mv

Q.30 (3)

netF


= 0

then p


= conserved

1 2 3p p p 
  

= 0

3
p


= –  1 2p p
 

3vm


=  1 2m v v 
 


3

v


= –    ˆ ˆ ˆ ˆ3i 2 j i 4 j    
 

3v


= ˆ ˆ2i 2j 

Q.31 (1)

netF


= 0

then p


= conserved

pi = pf
m1v = m2(0) + (m1 – m2) v1

v1 =  
1

1 2

m v

m m
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Q.32 (1)
As fnet = 0 from momentum conservation

  1A 4 v 4v    1

4v
v

A 4




Q.33 (A) [2] (B) [3]
(1) It could be non-zero, but it must be constant.
(2) It could be non-zero and it might not be constant.

Q.34 (2)
Total travelled distance = 2d

then

Time between two collisions =
0

2d

v

So no. of collision/sec =
0v

2d
Impulse in one collision = mv0 – (–mv0) = 2mv0

F = 2mv0 ×
0v

2d
=

2
0mv

d

Q.35 (2)

v1 = 2gh = 2 10 10  = 10 2

k2 =
1

4
k1  v2

2 =
1

4
v1

2

 v2 = 1v

2
= 5 2

|P| = |–mv2 – (mv1)| = m |–v2 – v1|

|P| = 50 × 10–3 ×
3

2
×10 2 =

–115 10

2



J =P = 1.05N-s.

Q.36 (2)
Impulse = change in momentum
–I = –m2u – mu
I = 3mu

W.D. = change in K.E.
2u I

u

W.D. =
1

2
m(2u)2 –

1

2
mu2

=
3

2
mu2 W.D. =

Iu

2

Q.37 (3)
Impulse = change in momentum

F.dt = P

Given F.dt J
Now, Contact time is twice than the earlier.

F.2dt J '


 J' = 2J

Q.38 (2)
mvi + mvj + 2mv3 = 0

3v


=
ˆ(vi vj)

–
2


= –

v

2
(i + ĵ ) = –

v

2
.

kf =
1

2
mv2 +

1

2
mv2 +

1

2
2m

2v

2
.

kf =
23mv

2
.

Q.39 (3)
From momentum conservation
mu = 2mv

 v =
u

2

from energy conservation

1

2
× 2m ×

2
u

2

 
 
 

= 2 mgh

 h =

2u

8g

Q.40 (4)

3m 2m
v v

T
(at the time
of collision)

A B

Impulse = change in momentum
So, –Tt = 2mv – mu (for bullet)
I = Tt = 3mv (for mass 3m)
3mv = 2mv – mu

v = u/5  I =
3mu

5

Q.41 (2)
If e = 1 then angle = 45°
If 0 < e < 1 then angle is less than
45° with the horizontal. So 30º is not possible.
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Q.42 (1)
In inelastic collision, due to collision some fraction of
mechanical energy is retained in form of deformation
potential energy.
 thus K.E. of particle is not conserved.
In absence of external forces momentum is conserved.

Q.43 (4)
0.5 × v

p
+ m × 0 = 5.05 v


f

i

v

v =
0.05

5
= 10–2



2
f

2
i

1
m(v )

2
1

m(v )
2

= (10–2)2 = 10–4.

Q.44 (1)

1m 2gh + 0 = (m1 + m2) v

v =
1

1 2

m 2gh

(m m )

 v2 – u2 + 2g ×
h

9
= 6 + 2g ×

h

4
=

gh

2

 v =
gh

2

Also,
gh

2
=

1 2

m 2gh

m m
 2m1 + m1 + m2 ;


1

2

m
1

m
 .

Q.45 (2)
by conservation of linear momentum

P
i
= P

f

 mv = (100 m) u
 u = v/100

P
i
= P

f

 mv = (100 m) u  u = v/100

Q.46 (3)
 e = 1
As collision is elastic therefore vi = vf

So K = 0 kf = ki =
1

2
m  2 2

1 2u u

Q.47 (3)
In absence of external force. Momentum of the system
is conserved.

Q.48 (3)
If e = 1 and m1 = m2 then after collision velocity
interchange

Q.49 (2)
from energy conservation

21
mql mv v 2gl

2
  

from momentum conservation

m 2gl mv '  v ' 2gl

1
KE m 2gl mgl

2
  

Q.50 (2)

1kg 2kg 1kg 2kg

21m/sec 4m/sec 1m/sec v2

A AB BBefore After

221 1 4 2 1 2v    

221 8 1 2v  

2v2 = 12v2 = 6m/sec

2 1

1 2

v v 6 1 5 1
e

u u 21 4 25 5

 
   

 

e = 0.2

Q.51 (3)

MA =  ×
4

3
r3 e =

1

2

MB =  ×
4

3
 (2r)3 = 8MA

mA v + 0 = mAv1 + mBv2 .........(i)

ev = v2 – v1 .........(ii)

Adding (i) + (ii) = 9v2 = v +
v

2
=

3v

2

 v1 = v2 –
v

2
=

v

6
–

v

2
= –

v

3
.


1

2

v

v =
v / 3

v / 6
= 2.

Q.52 (1)
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Centre of Mass

V0

V = 5

V
2
= Z

0

Vel. of Sep = Vel of approach ( elastic)

 20 + 5 = V – 5

V = 30 m/s Ans.

vb = –(v0 + 2v) m1 > > m2

vb = –(20 + 10) = –30 m/sec.

Q.53 (2)

Q.54 (1)
mu = mv1 + mv2 .......(i)
u = v1 + v2 .......(i)

2 1v – v

u
= e ......(ii)

as solving have
1

2

v

v =
1– e

1 e

 
 
 

.

Q.55 (1)

Let v1 is the velocity

of wall after collision.

e =
1V 20

20 ( 25)



  (e = 1)

20 m/s

25 m/s

V1

v1 = 65 m/s

Q.56 (1)

1st Collision m m 4m
C

v0

A B

2nd Collision

Velocity of B v =
mv 4m(0 v)

5m

 
=

3m

5

m m

3v/5

A B
After collision of A and B.

 m m
3v/5

Q.57 (2)
Let mass of ball 2 is m and mass of ball 1 is 2 m.

 1 1 2 2 2 2 1

1

1 2

m u m u m e u u
v

m m

  




2m m

v

1 2

v

3
=

2mv em(0 v)

3m

 
 e = 1

So elastic collision.

Q.58 (3)

Just before collision, speed of ball v 2gh and

just after collision
80

v ' 2gh
100

 =
4

2gh
5

gh2
5

4
'v 

gh2v 

h

v2 – u2 = 2aS
Let h' is the maximum height after collision.

0 –

2
4

2gh
5

 
 
 

= 2x (– g) × h'

16

25
× 2gh = 2gh

h' =
16

25
h

Q.59 (1)
From energy conservation

1

2
m  

2
2gh + mgh =

1

2
mv2

v = 2 gh

2gh
e

2 gh


h

gh2

A B
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
1

e
2

 ,
gh2v 

Q.60 (3)

2 10 5  = 10 m/sec.


10

10
+

2 e 10

10

 
+

22 e 10

10

 
+ ....

1 + 2 [e + e2 + ....]

1 +
2e

1 e
= 3 sec.

Q.61 (1)
v = Av1 + v2 (1)

1 2v v
1

v


 

1 2
v v v 

1 2

2v 1 A
v v v

A 1 1 A

 
   

  

Q.62 (3)

   1

5 5
5 10 0 v

2 2
   v1 = 20 m/sec

   
2 21 5 1

KE 20 5 10
2 2 2

   

= 500 – 250 = 250 J.

Q.63 (2)

2 2
i 1 2

1 1
E mu mu

2 2
 

 1 2m u u 2mu   1 2u u
u

2




Energy loss =    2 2 2
1 2 1 2

1 2m 1
u u m u u

2 4 2
   

Q.64 (4)
mu = nmu1 + 1mu2

1 2u u
1

u




u = n(u+u2) + u2
u = nu + nu2 + u2 ....(1)
u = nu1 + u1-u
2u = (n+1) u1 ....(2)

 

2

2 2
1

2
2

4u
1 n

nmu n 12
1 umu
2


 =

 2

4n

n 1

Q.65 (4)
p = 0.1 (6+4)
= 0.1 × 10 = 1 NS

Q.66 (1)

mgh =
1

2
mv2

h

v = 2gh

By momentum conservation

m 2gh + 0 = 2mv'

v' =
2gh

2
By energy conservation

1

2
(2m)v'2 = 2mgh', m

(2gh)

4
= 2mgh'

h' =
h

4

Q.67 (4)

0.2

0.8

1.0

1 t(s)

v(ms)
–1 before

collision collision after collision

2

(i)  v is +ve for both.
(ii)Yes (when maximum compression)
(iii)  S have greater velocity after collision then R

have before collision and K.E. of S will be less
then initial K.E. of R

1

2
msVs

2 <
1

2
mR (VR)2

but VS > VR So ms < mR

JEE-ADVANCED
OBJECTIVE QUESTIONS

Q.1 (B)
COM can lie anywhere within the radius r.

Q.2 (C)
COM of circle is at O. Let M1 is mass of circle and M2 is

mass of triangle
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Centre of Mass

a

a/3 COM of triangle

M1 M2

a/3

Distance of COM from centre of circle

r1 =
2

1 2

M

M M


=

2

2 2

a

a a



  
×

a

3

=

2

2

a a

3a ( 1)



 
=

a

3( 1) 

Q.3 (B)





3

64
= 8cm

C

COM of semic circular disc =
4R

3

So from point C distance of COM is 8 cm.
Center of mass coincides

Q.4 (D)

COM lie on this line

COM of rod
along y-axis

COM of rod
along x-axis

and equation of line is
x y

1
L L
 

Q.5 (D)

Acceleration of COM does not depend on position of
force.

Q.6 (B)
Since no external force acting on system hence V

CM

remain constant.

Q.7 (D)
Anexternal forceof 3m2R is required which can act

anywhere on system.

Q.8 (C)

Centre of mass of uniform semi-circular disc is at
4R

3

Centre of mass of uniform semi-circular ring is at
2R



Centre of mass of solid hemi-sphere is at
3R

8

Centre of mass of hemi-sphere shell is at
R

2
C T H R S D
h h R 2R 3R 4R
4 3 2  8 3

Q.9 (C)
Since there is no ext. force on system

m (R – x) + m (–x) = 0
x =R/2.

x

Alternate : Let the tube displaced by x towards left,
then ;

mx = m (R – x)x =
R

2

Q.10 (C)
Taking the origin at the centre of the plank.
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Centre of Mass

A B
40 kg 60 kg

40 kg

60 cm

smooth

x

m1x1 + m2x2 + m3x3 = 0

( xCM = 0)
(Assuming the centres of the two men are exactly

at the axis shown.)
60(0) + 40(60) + 40 (–x) = 0 , x is the displacement

of the block.
 x =60 cm
i.e. A & B meet at the right end of the plank.

Q.11 (B)
Since all the surfaces are smooth, no external force is
acting on the system in horizontal direction. Therefore,
the centre of mass of the system in horizontal direction
remains stationary.

x-coordinate of COM initially will be given be given
by–

x
i
=

21

2211

mm

xmxm




=

MM4

)R5L(M)L)(M4(




= (L + R)....(1)

Let (x,0) be the coordinates of the centre of large
sphere in final position. Then x-coordinate of COM
finally will be

x
f
=

MM4

)R5–x(M)x)(M4(




= ( x– R )......... (2)

Equating (1) and (2), we have
x = L + 2R

Therefore, coordinates of large sphere, when the smaller
sphere reaches the other extreme position, are
(L+ 2R, 0) Ans

Q.12 (A)
yCM = 0

yCM = 1

m
y

4
+ 2

3m
y

4
y1 = + 15

 y2 = –5 cm

Q.13 (B)
when ball reaches pt A.
then block get shifted by x
 but since than there is no ext
force therefore com remain at its position

[(R–r) – x]m= Mx

 x =
m(R – r)

M m

Q.14 (C)
Using momentum conservation

MV = mv V =
mv

M
......(i)

using energy conducts equation

mg(R–r) =
1

2
mv2 +

1

2
Mv2 ......(ii)

on solving we get v =
2g(R – r)

m
M(m – m)

.

Q.15 (A)

a
com

=
extF Mg R

M M




 

(Rem. R


is vector)

Q.16 (C)
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Pi = 0 ...(i)
Pf = MV – mV1 ....(ii)

MV – mV1 = 0 u =
m

M
V..

using V1
2 = u2 + 2ax.

a = g.

2
MV

m

 
 
 

= 0 + 2g x.

 x =

2 2

2

M V

2m g

Q.17 (C)
use m1v1 = m2v2 = P

F.E. =
2

1
mv1

2 +
2

1
m2v2

2

=
1

2
m1

2

1

P

m

 
 
 

+
1

2
m2

2

2

P

m

 
 
 

=
2

1
2

2 1

1 2

P (m m )

m m


.

Q.18 (B)
If we treat the train as a ring of mass 'M' then its COM

will be at a distance
2R


from the centre of the circle.

Velocity of centre of mass is :
VCM = RCM .

=
2R


.=

2R V
.

R

 
 

  
( =

V

R
)

 VCM =
2V


MVCM =

2MV


As the linear momentum of any system = MVCM

 The linear momentum of the train =
2MV


Ans.

Q.19 (A)
Using momentum conservation

1 2 3 4p p p p 0   
   

1 2 3 4p – p – p – p
   

2 2 2
1 2 3 4p p p p  


K. E1 =
2 2 22
2 3 41 p p pp

2m 2m

 
 = E0 + E0 + E0

Total energy = 3E0 + E0 + E0 + E0 = 6E0

Q.20 (A)

I = f × t and F = 2 1m( 2gh 2gh )

t





F =
–3100 10 ( 2 9.8 0.625 2 9.8 2.5)

0.01

     

F = 105 N

Q.21 (B)
(i) From M.C. mv = 2mv'

v' = v/2
(ii) from M.C. mv = 2mv'

v' = v/2
(iii) Impulse = mv = 3mv'

v' =
v

3

Q.22 (B)
P = 2mv cos 
Favg unit volume
= (2mv cos ) (nv)
= 2mnv2 cos 

 

m
v

Pressure =
F

area


= 2mnv2 cos  cos 

Q.23 (B)
In centre of mass frame total momentum of the system
is always zero.

Hence momentum of other particle is – p


.

Q.24 (B)

2M M2F F

aCOM =
F

3M
w.r. to COM

2M M 4F/34F/3

x2 x1

4F

3
x1 +

4F

3
x2 =

1

2
k (x1 + x2)

2

8F

3K
= (x1 + x2)
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Q.25 (C)

Velocity of the ball on striking = 2gh

After that ball goes to height less than (h) due to

inelastic collission = 2g(h – d) .

 2g(h – d) = e 2gh

h – d = e2h 
h

d
= 2

1

1 – e
.

Q.26 (A)

e =
vsin

2gh cos





apply conservation of momentum

m 2gh = m vcos ......(i)

e 2gh cos × m = mv cos ......(ii)

tan

e


= cot.

 e = tan2 on solving

Q.27 (A)

Here e = 1

if ball rebound elastically

vLOI = uLOI

Along line of impact momentum conservation

Ndt mv – (–mu) mv mu   = 2mu

Alog LO I uLOL = u cos

= 2gh cos

J = 2m cos gh2 .

Q.28 (A)

v1 = v

and v2 = ev and t =
avg

d

v

<vavg> =
t

e

2
v

3
=

2

v ev




 

1

3
=

e

e 1
.

get e = 0.5

Q.29 (C)

m2vcos = 3vy

yv

vcos
=

2

3

Also e =
yv

vcos
=

2

3
.
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Q.30 (B)

N

Vf

3
sin

30°
=

1.5
3 m/sec

3 cos 30°

mVf cos 30° = 1.5m
Vf cos 30° = 1.5

vf = 3 m / s

Q.31 (D)
mgh = KEA + KEB

0.25 × 0.45 × 10 = 1 +
1

2
(0.25)v2

v = 1 m/s
Ball B is heavy so ball A velocity is towards left

Q.32 (C)

02N sin .dt Mv  ..........(i)

N cos . dt Mu ' 

N N

NN



N


2R

3R/2 3R/2

u'

N.dt =
0mv

2 5
. 3

sin  =
2 2(3 / 2)R R

3/ 2R



sin  =
5

3
; cos

2

3

0mv 3

2 5

2

3
= mv'  v' =

0v

5

Q.33 (C)
Impulse = change in momentum

2N sin dt = 0mv

2
....(i)

N.cos dt = mv' ....(ii)

from (i) and (ii)

0mv5
2 N dt

3 2
 

2N
dt mv '

3


On dividing

2N 5

3


×

3

2N
= 0v

2v '

v' =
0v

2 5

Q.34 (D)

time to reach
h

2
from top by AA

t =
h

g

for body B

h

2
= v

h

g
–

1

2
g

2
h

g

 
  
 

gt

O
A

BO

hOO

h/2

h = v
h

g
, v = hg

velocity of body B at
h

2

vf =
h

hg g
g



vf = 0
Now
momentum conservation
mg.t = 3mv'

gt/3 = v'
Energy conservation


1

2
3m (gt/3)2 + 3mg

h

2
=

1

2
3m.v1

2

v1 =
10gh

3

Q.35 (A)
In x direction : Applying conservation of momentum
mu = 2mvcos30
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v =
u

2cos30º
=

u

3
.

Also e =
v

u cos30º
=

u 2

3u 3
 .

 e =
2

3
.

Q.36 (C)

sin =
R / 2

R
;  = 30º

Both have equal mass it means along LOI particle
transfer it velocity to disc which is vcos.

so VD = Vcos  = Vcos 30º =
3V

2

Q.37 (C)

Q.38 (D)
Infinite

Q.39 (B)

g

cosv2 

Q.40 (C)

r mcv v
 

vr = mv


– cv


= v – u = 0.

 since vr = 0 so Ft =
vrdm

dt
= 0.

Fnet = m
dv

dt

F + 0 = (m0 – µt)
dv

dt

 F = (m0–µt)
dv

dt
.

Q.41 (C)
Neglecting gravity,

v = un
0

t

m

m

 
 
 

;

u = ejection velocity w.r.t. balloon.
m0 = initial mass mt = mass at any time t.

= 2n
0

0

m

m / 2

 
 
 

= 2n2.

Q.42 ((a) & (b))
(a) Since the speed remains same for both sand and
car at same instant
 Momentum is conserved in both A and C point
(b) B

Car maintains the same speed.

Q.2 (A, B)

Q.3 (B,D)
Center of mass of ring is at centre and centre of mass
of chord AB is at its mid point so centre of mass of

this combination lie at the line which makes 45° with
x axis.

Y

XA

B

Ring COM line

Possible combination

R R R R
, ; ,

3 3 4 4

 
 
 

Q.1 (A,B,C,D)

MCQ/COMPREHENSION/COLUMN MATCHING

JEE-ADVANCED
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Centre of Mass

Q.4 (B, C)

Q.5 (B,D)

Q.6 (C,D)

Q.7 (B,D)

Pi = mv (i)
Pf = (m + m) v
at maximum compression
Pi = Pf v' = v/2
By energy compression

1

2
mv2 + 0 =

1

2
(2m) (v)2 +

1

2
kx2

kx2 =
2mv

2
 x =

m
v

2k
 .

at maximum compression k =
1

2
(m+m)v2 k = mv2

= mv2/4.

Q.8 (A,D)

Q.9 (B,C)

Q.10 (A,D)

Q.11 (A,B,C,D)

Q.12 (A,C)

mv = nvm v =
v

n

time for first collisen is t1 =
L

V
(2nd block)

2nd collisions t2 =
2

V


= 2t1

(3rd block)
so t = t1 + 2t1 + 3t1 + at1 ...........(n–1) t1.
t = t1 [1 + 2 + 3] .......................(n–1)]

=
(n –1)(n –1 1)

2


=

n(n –1)

2

so t =
L

2x
n (n – 1).

Q.13 (A,B,C,D)
vcos = ucos
vsin = eusin

v2 = 2 2 2u cos e sin 

v = 2 2 2u (1– sin ) e sin  

 v = u 2 21 – (1 – e )sin 

tan= etan.
I = m (vLOI –uLOI)
= m (eusin – usin)
= mu (1 + e) sin.

ki =
1

2
mu2 kf =

1

2
mv2

f

i

k

k =

2

2

1/ 2mv

1/ 2mu
= cos2 + e2 sin2.

Q.14 (A,C,D)

a =
f

m
for elastic collission e = 1

v1
2 = 0 + 2ad

vb1
2 =

2F
.d

m
vb1 =

2Fd

m

after collisin vb2 = 0.

Q.15 (B,D)

Q.16 (B,C)

u1 = v v2 = – (v + 2u) e = 1.
|vdt| = m (v1 – u1)
vdt = m (+v + 2u + v)
vdt = 2m (u + v).

v =
2m(u v)

dt


.

u1 = v v1 = 2u + v

k =
1

2
mv1

2 –
1

2
mu1

2 =
1

2
[m (2u + v)2 – v2]
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=
m

2
[4u2 + v2 + 4uv – v2]

= 2mu (u + v)
By energy compression
mv2 + 0 = (2m) + kx2

kx2 =  x =.
at maximum compression
k = (m+m)v2 k = mv2 = mv2/4.

Q.17 (A,C)

V

V

V

V
(L – Vt)

2 2(Vt) (L vt) L  

2V2t2 + L2 – 2LVtL2

Vt – L  0

t 
L

V

Q.18 (A,B,D)

M 2M

V V

For minimum kinetic energy
MV0 = 3MV V = V0/3

K = –

2

20
0

V1 1
3m mv

2 3 2

  
  

   

= 2 Joule

Q.19 (A,B,C)

2 m/sec 1 m/sec4 m/sec v'

A AB B

Momentum conservation
1 × 21 – 2 × 4 = 1 × 1 + 2 × V'
V' = 6 m/s

e =
6 1

21 4




=

1

5

Loss of kinetic energy = kf – ki

=
1

2
× 1 × (1)2 +

1

2
× 2 × (6)2

–
2 21 1

1 (21) 2 (4)
2 2

 
     

 

= 200 J

Q.20 (A,B,C,D)
Inelastic collision
0 < e < 1

Q.21 (B,D)
Given

Before collision
u1 u2

After collision
u'1 u'2

u2 – u1 = v1 and ' '
2 1 2u u v 

e =

' '
2 1

1 2

u u

u u





1 2v v 
 

(elastic collision, e = 1)

In general for all cases

1 2v kv 
 

k  1

Q.22 (C)
(a) The acceleration of the centre of mass is

a
COM

=
F

2m
The displacement of the centre of mass at time t

will be

x =
1

2
a

COM
t2 =

2Ft

4m
Ans.

Q.23 (A)

Q.24 (D)
(Q. 22 and Q. 24)
Suppose the displacement of the first block is x

1
and

that of the second is x
2
. Then,

x =
1 2mx mx

2m


or,

2
1 2x xFt

4 m 2




or, x
1
+ x

2
=

2Ft

2m

...(i)
Further, the extension of the spring is x

1
– x

2
. Therefore,

x
1
– x

2
= x

0 ...(ii)

From Eqs. (i) and (ii), x
1
=

1

2

2

0

Ft
x

2m

 
 

 

and x
2

=
1

2

2

0

Ft
x

2m

 
 

 
Ans.
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Q.25 (B)
As net force in x direction is zero. So from
momentum conservation.
mV0 = (M+ m)V2

M

h

m v0

V2 = 0MV

M m

Q.26 (B,D)
Velocity of center of mass

VCOM =
MV mV

M m




= V

So both are at rest with respect to centre of mass. And
kinetic energy is converted into potential energy.

Q .27 (C)
By Energy conservation

1

2
mv0

2 =
1

2
(M + m)

2

0mv

M m

 
  

+ mgh

After solving

 h =
M

M m

 
 

 

2
0V

2g

Q.28 (C)
V1 is the velocity of particel and V2 is the velocity of
wedge.

O

V2V1

(V1 + V2) = vel. of particle w.r.t. wedge

 –
0 0mV M( V )

M m

  
  

+
0 0mV mV

M m

 
  

=V0

Q.29 (B,C)

As net force in x direction is zero.

So by momentum conservation

Mv2 – mv1 = mV0

and V1 + V2 = V0

MV1

V2

m

2 – mV1 = mV0 .......(1)

V1 + V2 = V0 .......(2)

By solving

V1 =V0

M m

M m

 
 

 

Q.31 (A,B,C,D)
(a) V1 + V2 = V0

V2 = V0 – V0

M m

M m

 
 

 

= 0 0 0(M m)V V M V m

M m

  



= 02mV

M m

K.E. =
1

2
× M ×

2 2
0

2

4m V

(M m)

[ h =

2
0VM

(m M) 2g
]

 K.E. =

24m
gh

(m M)

(b) V2 = 02mv

M m

(c) K.E. = kf – ki

=
1

2
M

2 2
0

2

4m V

(M m)

 
 

 
– 0

= 2

4mM

(m M)
2
0

1
mV

2

 
 
 

(d)  vel. of wedge V2 = 02mV

M m

Vel. of particle V1 = V0

M m

M m

 
 

 

VCOM =
2 1MV ( mV )

M m

 



= 0mv

M m

Q.30 (B)

As net force in x direction is zero.

So by momentum conservation

MV
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Q.32 (A)

1 2

1 2

m m
a g

m m






Let m1 = (L + x) and m2 = (L - x)
where  is mass per unit length

+ x
L

L
– x

a =
2x

2L
g =

x

L
g

Q.33 (C)
from energy conservation

Initial

2L mg
2


=

1

2
mv2u = g

Q.34 (A)
During collision, forces act along line of impact. As
collision is elastic and both the balls have same mass,
velocities are exchanged along the line of impact.
Therefore ball B moves with velocity VB||, that is equal
to u cos 30°. Ball A moves perpendicular to the line of
impact with velocity VA = u cos60°. Along the line
of impact, ball A does not have any velocity after the
collision.
Therefore velocity of ball A in vector form after the
collision

30°

30°

60°

R

u

VA

V
A||

V
B||

x

y

= VA cos60°i + VA cos 30°j
= (u cos 60°) cos60°i + (u cos 60°) cos 30°j

=
1 1

4. . . i
2 2

+
1 3

4. . . j
2 2

= (i 3j) m/s

Q.35 (C)
Using impulse-momentum equation for ball B

x

V
B||

B

 dtN

f iN dt p p 
 

and as 0pi 


fN dt p


= (mu cos 30°) cos 30 i – (mu cos30°) cos 60° j

=
3 3

m.4. . .i
2 2

–
3 1

m .4. . . j
2 2

= (3mi – 3 mj) kg
m

s

Q.36 (B)
Suppose V2 is velocity of ball B along the line of impact
and V1 is velocity of ball A along the line of impact,
after the collision, as shown.

Then
1

2
(Velocity of approach) = Velocity of separation

1 3
.u

2 2

 
 
 

= V2 – V1

.... (1)

B

V
1A

V
2

Conserving momentum along the line of impact

m.
3

2
u = m. V2 + mV1

.... (2)
Solving and using u = 4 m/s

V2 =
3 2

2
m/s

2

3 3 3 3
V cos 30 i cos 60 j

2 2
   



=
9 3 3

i j
4 4

 
  

 
m/s

Q.37 (A)
As Fnet in x direction = 0
mx1 = mx2 [ Fx = 0]
x1 =x2
Now x1 + x2 = L sin 

CMf =
Lsin

2


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L sin

v2

x1

/2 x2

CMf

L

L

CMi

L/2 cos

Q.38 (D)
VCMx = 0 and Fx = 0
from momentum conservation
mv1 = mv2  v1 = v2 = v(let)
Now energy conservation

mg (1 – cos ) = 2
21

mv
2

 
  

v2
  = g (1 – cos )

Distance from centre of mass = R =
2



So T =
2mv

R
=

mg (1 cos )

/ 2

 


T = 2mg (1 – cos )

Q.39 (A)
from previous question

vmax = V =  
1/2

g (1 cos ) 

Q.40 (B)
Only in vertical direction
[ fx = 0 always]

So displacement =
L

2
–

L

2
cos 

=
L

2
[1 – cos ]

Q.41 (D)

Positive Negative

MM1 M2

A B
v'

u –v'rel

By momentum conservation
O = m1 (urel – v') – (m2v' + Mv')
m1(urel – v') = m2v' + Mv'

v' =
1 rel

1 2

m u

m m M 

Q.42 (A)

netF 0


comV 0


 COM is at rest.

u u

v'

–m1u + m2u + Mv = 0

v' =
1 2(m m )

M


u

Q.43 (A)

m1

u –v'rel

m2

u +v'rel

v'

m2(Urel + v') + Mv' = m1(urel – v')

v' =
1 2 rel

1 2

| m m | U

m m M



 

Q.44 (A) p (B) q (C) p,r (D) q,s
(A) If velocity of block A is zero, from conservation of

momentum, speed of block B is 2u. Then K.E. of

block B =
2

1
m(2u)2 = 2mu2 is greater than net

mechanical energy of system. Since this is not
possible, velocity of A can never be zero.

(B) Since initial velocity of B is zero, it shall be zero for
many other instants of time.

(C) Since momentum of system is non-zero, K.E. of
system cannot be zero. Also KE of system is
minimum at maximum extension of spring.

(D) The potential energy of spring shall be zero
whenever it comes to natural length. Also P.E. of
spring is maximumatmaximumextension of spring.

Q.45 A (q) , (B) p,q (C) r (D) s
(A) Initial velocity of centre of mass of given system
is zero and net external force is in vertical direction.
Since there is shift of mass downward, the centre of
mass has only downward shift.
(B) Obviously there is shift of centre of mass of given

system downwards. Also the pulley exerts a force
on string which has a horizontal component
towards right. Hence centre of mass of system
has a rightward shift.

(C) Both block and monkey moves up, hence centre of
mass of given system shifts vertically upwards.

(D) Net external force on given system is zero. Hence
centre of mass of given system remains at rest.

NUMERICAL VALUE BASED
Q.1 [6 m/s]

Q.2 [650.00]
Using relative velocity time of slight before collision
will be

t =
20

20
= 15

By COM at the time of collision
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3 × 10 – 1 × 10 = 4 × v
2 × 10 = 4 × v
5 = v

T

O

W

E

R

B

1

gt = 10 ms–1

20 – 10 × 1 = 10 ms–1

B

h–h’ = 15m

h’ = 1/2 × 10 × 1
2

= 5m

15

v = 5 ms–1

For 1-D motion
v2 = u2 + 2 as
= 52 + 2 × 10 × 15
= 25 + 300 = 325
K = 650 J

Q.3 [800.00]
By conservation of momentum

– 200 × v1 + 2 × v2 = 0
100 v1 = v2 ... (1)
v1 = v2 / 100










100

v2
· t = 8

t =
2v

00

v2 · t = x

x = v / 2 ·
2v

800

x = 800 m

Q.4 [50]

At the topmost point of the trajectory, the momentum

of the system is zero. From conservation of momentum,

11vm


+ 22vm


+ 33vm


= 0

as m1 = m2 = m3

1v


+ 2v


+ 3v


= 0 .....(1)

The second and third fragments reach the ground

simultaneously, therefore vertical components of v2 and

v3 must be same; secondly, v1 is downwards, the vertical

components of v2 and v3 are
2

v1
(i.e. directed

upwards)

for first fragment, h = v1t1 +
2

tg 2
1 ....(2)

for second fragment, h =
2

tg

2

tv 2
221 


....(3)

from equations (2) & (3), v1 =
21

2
1

2
2

tt2

)tt(g





and h =
2

ttg 21














 21

21

tt2

t2_t

Q.5 [18]

v = 2u 2g(h) ; ev = )5(g2

4

1
v2 = 100 ; v2 = 400 ; v = 20

400 = u2 + 2gh

400 = u2 + 20 h and h = 3.8 m

u2 = 324 u = 18

Q.6 [9]

g = 2

2

)1()2()1(2

)2()142( 

D = 2

M = 2

t = 1

t = 1 s

ag
mM2

m












v2 = 0 + 2aH

D = vt

D2 = (2aH) t2













M2m

m
ga

Ht2

D
2

2

mHt2

D)M2m(
g

2

2


Q.7 [10]
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Let displacement of plank be represented by ĵyîx 

For x-component
50 [L – x ] – 100x – 50x = 0

x =
4

L

Similarly y-component
50 [L – y ] – 100y – 50y = 0

y =
4

L

Thus ĵ
4

L
î

4

L
r 


or 2
4

L
|r| 


Q.8 [50]
By Energy Conservation

2

Rmg
=

3

)R2(m

2

1 22

2 =
R2

g3

Now, 2Ncos 45° – mg =
2

R

R2

g3
m 

N =
22

mg5
=50

Q.9 [75]

From the principle of conservation of linear momentum

we have

mu = M1v + mv’

and mv’ = (m + M2)v

or 20u = 1000v + 20v’

and 20v’ = (20 + 2980)v

or u = 50v + v’ ...(i)

and v’ = 150 v ...(ii)

From (i) and (ii), we get 3u = v’ + 3v’ = 4v’or

v’ = 3u/4 = 75

Q.10 [2]

The position of centre of mass of the system is ycm.

ycm =
1 2

1 2

h
m H m

2
m m

  



Where m1 = 1 kg, m2 =(0.4 × h × 103) kg

h
x

y

kg
H=10cm

ycm

m =11

= (400 h) kg

ycm =

h
1 H (400h)

2
(1 400h)

  


=

2H 200 h

(1 400 h)





for ycm to be lowest (minimum)

0
dh

dycm 

200 h2 + h –H = 0

h = 2 cm

KVPY

PREVIOUS YEAR’S
Q.1 (D)

external force does not work on system
So according to concept of centre of mass.
36 x = 9 × (20 – x)

Q.2 (B)

·
·
·

A

CM

B

a
B

> a
C

> a
A

a
B

= g

A/CM A CMa a a ( )  
  

B/CM B CMa a a ( )  
  

Q.3 (B)
Applying the law of conservation of momentum,
mv + 0 = (2m) v’

v ' v / 2

21
K.E (2m)v '

2

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Q.4 (D)

Under influence of constant force centre of mass
follows its original path

1
30 30

2R 45m
10

 
 

m 27 mx
45

m m

  




x=63,117 m

Q.5 (D)
Using energy conservation and law of restitution and
momentum conservation.

Q.6 (A)
CM will go downwards

Q.7 (A)

3m
1.4m

xx

6m

6

x 6 m 6–x

12 m

3m

3 = (6 + x) tan 
6 x

1
12

 
  

   6 x 6 x tan
3

12

  


x
1.4 x tan 1

12

 
    

 x 12 x
1.4 tan

12


 

2

2

30 36 x

14 12x x






360 x – 30 x2 = 36 × 14 – 14x2

16x2 – 360x + 36 × 14 = 0

 2
360 360 4 36 14 16

x
32

    


360 312 48
x 1.5

32 32


  

Q.8 (B)

O

a

a a
,

2 2

(0, 0) (0, 0)










2

b
,

2

b

O

b

P(b,b)










2

a
,

2

a










2

b
,

2

b

OO

a
(0, 0)

1 1 2 2
cm

1 2

m x m x
X

m m






m
1
is the mass of square wooden sheet of side a & m

2
is

the mass of removed square portion of side b.
x-coordinate of C.O.M. of remaining -shaped sheet.
 is areal mass density
 m

1
= a2, m

2
= b2

2 2

cm 2 2

a b
(a ) b

2 2
X

a b

   
      

   
 

3 3

cm 2 2

1 a b
X

2 a b

 
  

 

similarly

3 3

cm 2 2

1 a b
Y

2 a b

 
  

 

centre of mass lies on point P(b, b)
 X

cm
= b and Ycm = b

a2 + b2 + ab = 2ab + 2b2

a2 = ab + b2

2
a a

1
b b

   
    

   
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Let
a

x
b



x2 – x – 1 = 0

1 1 4
x

2

 


5 1
x

2




a 5 1

b 2




Q.9 (A)
Planar circular segment can be seen as it consist of Arc
element.


r dr

Mass of element = dm =  × r × dr

centre of mass of Arc element is at
r sin

2

2





 Centre of mass location of segment

=

r sin 2
dm

2

dm

  
     



R

0

R

0

r dr r sin( 2)

2

r dr

   




 






3

2

sin
R22

R
3

2

 
 
 

  
 


4 sin( 2)

R
3





Q.10 (C)

a M2

bC2

C1 h

COM
h
3

b
2

Equal are

1

2
ah = ab

h = 2b

1 2

h b
M M

3 2
 [centre of mass of combination at the

mid-point of their common edge]

1

2

M 3 b

M 2 h


1

2

M 3 1

M 2 2

 
   

1

2

M 3

M 4


Q.11 (A)
Centre of mass of remaining cube x coordinate = b

3 3

CM 3 3

a b
a b

2 2X
a b

   


 

We will consider removed mass as a negative mass

4 4

3 3

a b

2 2b
a b

 



 

4 4
3 4 a b

a b b
2 2

  

3 4 4 42a b 2b a b  

4 3 4 4 4 4put a bx 2b x b 2b b x b    

3 42x 1 x 
3 42x 2 1 x  

3 2 22[x 1] (x 1)(x 1)   

    2 22 x 1 x 1 x x 1 x 1 x 1            

2 3 22x 2 2x x x x 1     
x3 –x2 – x – 1 = 0

Q.12 (A)

Velocity of sand particle just before striking the bottom

is v = u + at

v = 0 + 10 × 2 = 20 m/s

pi = (0.2 × 10–3) × 20

pf = 0

|p| = 4 × 10–3 k-m/s

av g

p
f n

t


 


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Centre of Mass

34 10 100

1

 


= 0.4 N

Q.13 (D)

M

M V'

V m

m v

(Before collision)

(After collision)

v V '
e 1

V


 

 V = v – V’

V + V’ = v

Q.14 (B)

Before collision

m
u1

m/2

After collision

m/2m
v1 v2

By pi = pf

 mu, = mv1 +
M

2
v2  v1 +

2v

2
= u1 .......(1)

By e = l' =
2 1

1

v v

u


v2 – v1 = u1 .......(2)

By (1) & (2)

v2 =
4

3
u1 & v1 =

1u

3

So
1

2

v 1

v 4


Q.15 (D)

3u

u Initially

m1

v1

v2

Finally

m1

m

from momentum conservation

–mu + m
1
3u = m

1
v

1
+ mv

2
........(1)

from energy conservation

2 2 2 2
1 1 1 2

1 1 1 1
mu m 9u m v mv

2 2 2 2
  

2 2
1 1 1 2

1 1 1
mu m (3u v )(3u v ) mv

2 2 2
   

from equation ...(1)

 m
1
(3u . v

1
) = m (v

2
+ u)

2 2
2 1 2

1 1 1
mu m(v u)(3u v ) mv

2 2 2
   

as m
1
>>> m, we can assume v

1  3u

u2 + (v
2
+ u)(6u) = 2

2v

 v
2
= 7u

JEE MAIN

PREVIOUS YEAR’S

Q.1 (2)

K1 =

2
1

1

P

2m
& K2 =

2
2

2

P

2m


1

2

K

K =

2

1

2

P

P

 
 
 


2

1

M

M

 
 
 



2

1

2

P

P

 
 
 

=
2

1

M

M 
1

2

P

P =
2

1

M

M =
1

2

Q.2 (3)

Q.3 (2)

1

2

M

M =
1

2

M1V1 = M2V2 = P

K1 =

2

1

P

2M
K2 =

2

2

P

2M

1 2

2 1

K M 2

K M 1
 

=
A 2

1 1
 = 2

Q.4 (1)

Using linear momentum conservation in y-direction

Pi = 0

Pf = m 
1

2
v1 – m 

1

2
v2

v1 = v2

Q.5 (1)
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Centre of Mass

x

y

x

y

3a/2

xcom =

2
2

2
2

a a
( a a) 3

4 2
a

a
4

      


  

xcom =

3a 5a
a

5a8 8
1 3 61
4 4


 



Q.6 (30)
Before Collision

B
Rest

10 kg 20 kg

10 3 m/s

After Collision

Rest

10 kg

10 kg

10 m/s

20 m/s

From conservation of momentum along x axis;

i fP P
 

10 10 3 = 200 cos 

cos  =
3

2

 = 30°

Q.7 (3)
From energy conservation,

after bullet gets embedded till the

system comes momentarily at rest

 
 
 

(M + m)g h =
1
2

1
(M m)v

2
[v


is velocity after collision]

v


= 2gh

Applying momentum conservation, (just before and
just after collision)
mv = (M + m)v

1

2
1 3

M m 6
v v 2 9.8 9.8 10

m 10 10




 
     

 

 831.55 m / s

Q.8 (4)

v
0

= 2gh

v = e gh = 2gh

e = 0.9
S = h + 2e2h + 2e4 h +..........

t =
2h

g
+ 2e

2h

g
+ 2e 2

2h

g
+........

v
av

=
s

t
= 2.5 m/s

Q.9 (1)
C comes to rest

V
cm

of A & B =
v

2


1

2
is

2
ret

1
v

2
 kx2

x =
2v

k


=

m
v

2k

Q.10 (4)

C.O.M of quarter disc is at
4a

3
,

4a

3
= 4
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Centre of Mass

Q.11 (20)
Let velocity of 2nd fragment is v

 then by conserva-
tion of linear momentum

 ˆ ˆ10 10 3 i 10 10 j 10v


  ˆ ˆv 10 3i 10 j


   v 300 100 400 20m / s


Q.12 (1)

v v

m1 m2

m
1
v

1
= –m

1
v + m

2
v

v
1

=   2

1

m
v vm




1 2

1

v v m
v m

e = 
1

2v
1v

v = 1v
2


1 1 2

1 1

v v / 2 m

v / 2 m

3 = 2

1

m
m

Q.13 (4)

Q.14 (1)

Q.15 (2)

Q.16 (25)

Q.17 (25)

Q.18 (3)

Q.19 [2]

Q.20 (3)

Q.21 (3)

Q.22 [1]

Q.23 (50)

JEE-ADVANCED
PREVIOUS YEAR'S
Q.1 (D)

R =
2h

u
g

 20 = 1

2 5
V

10


and 100 = 2

2 5
V

10



 V
1
= 20 m/s , V

2
= 100 m/sec.

Applying momentum conservation just before and just
after the collision
(0.01) (V)=(0.2)(20)+(0.01)(100)

V = 500 m/s

Q.2 (4)

= 0.1

21
mu

2
=mg × 0.06 +

1

2
kx2

1

2
× 0.18 u2 = 0.1 × 0.18 × 10 × 0.06

0.4 =
N

10
N = 4 Ans.

Q.3 (5)

To complete the vertical circle

1g = 25g

2

1




= 5
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Centre of Mass

Q.4 (A)
At the highest point

v
1

= 0u cos

2


(by applying momentum

conservation in horizontal direction)

v
2

= 0u cos

2


(by applying momentum

conservation in vertical direction)

(H =

2 2
0u sin

2g


)

= 45°

Q.5 (B)

K =
2 21

mg t
2

2tK  : parabolic graph

then during collision kinetic energy first decreases
to elastic potential energy and then increases.
Most appropriate graph is B.

Q.6 (AB)
If speed of point mass is v, then using conservation of

linear momentum
mv

V
M



2

2 21 1 mv 1 m
mgR mv M ;mgR mv 1

2 2 M 2 M

   
         

2gR
v

m
1

M



 ; M

mR
X

M m

 
   

Q.7 (ABC)

u’ = u,  = constant

v

u' u'

A

w. r. t plane

A

(u' – v) (u' + v)

Before collisionBefore collision

(u' – v)
(u' + v)

After collision

After collision

A

F

Fleading
Ftrailing

F
trailing

= 2A(u’ – v)2

F
leading

– F
trailling

= 2A(4u’v) = 8Au’v

Pressure difference

leading trailingF F
8 u 'v 8 uv

Area


    

Net force on plate

net

mdv
F F 8 A uv

dt
    

After long time v will be sufficient so F = 8Auv

After that v = constant, i.e. plate will achieve terminal

velocity.

Q.8 (D)

/n R
h

R = Maximum
height

h
cos

n R

 
  

h
R h h

cos
n

    
 

  

1
h

cos 1
n

 
 
 

      
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Centre of Mass

Q.9 [6.30]

t
0v v e 

0

J
v 2.5m s

m
 

t
0v v e 

t
0

dx
v e

dt
 

x
t

0

0 0

dx v e dt


  
x

x e
e dx

1


 



t

0

0

e
x v

1



 
 
 

  
 

 

  1 0x 2.5 4 e e  

  x 25 4 0.37 1  

x 6.30

Q.10 (B,C)

L

v0 V

(1) average rate of collision =
2L

v

(2) speed of particle after collision = 2V + v
0

change in speed = (2V + v
0
) – v

0

After each collision = 2V

no. of collision per unit time (frequency) =
v

2L

change in speed in dt time = 2V × number of collision in
dt time

 dv = 2V
v

2L

 
 
 

.
dL

V

dv =
vdL

L

Now, dv = –
vdL

L
{as L decrease}

0

0 0

L / 2v

v L

dv dL

v L
  

 0

0

L / 2v
v L[In v] [In L] 

 v = 2v
0


0LKE =

1

2
2
0mv

0L / 2

0

KE
4

KE


0L / 2KE =
1

2
m(2v

0
)2

or

(dt)
v 2mv

F
2x dt

 
 

 

x

F =
2mv

x

– m v
2dv mv

v x


–
dv dx

v x


ln 2

1

v

v
= In 1

2

x

x

vx = constant  on decreasing lenth to half K.E. be-
comes 1/4
vdx + xdv = 0

Question Stem for Question Nos. 11 and 12

Q.11 [0.50]

Q.12 [7.50]

x

y

R

5m/s = ux
45°

u = 5m/sy 5 2m/s

Range R =
x y2u u 2 5 5

5m
g 10

 
 

Time of flight T =
yu 2 5

g 10

 
 = 1sec
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Centre of Mass

O

y

2m 5m/s

Just before splitting x

O

y

m

x

m
v

R/2 R/2 R/2

Just before splitting

 Time of motion of one part falling vertically

downwards is = 0.5 sec =
T

2

 Time of motion of another part, t =
T

2
= 0.5 sec

From momentum conservation  P
i
= P

f

2m × 5 = m × v

v = 10 m/s
Displacement of other part in 0.5 sec in horizontal

direction = v
T

2

= 10 × 0.5 = 5 m = R
 Total distance of second part from point 'O' is,

3R 5
x 3

2 2
  

x = 7.5 m
 t = 0.5 sec
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Rotational Motion

EXERCISES

ELEMENTARY

Q.1 (2)

 = t

27 3000
1

60


  

Q.2 (3)

2
rad / s

60 30

 
  

Q.3 (1)

2
T





if time period same then  will be same

a
C

= 2r
1 1

2 2

a r

a r


Q.4 (4)

rot
f 300

min
 ; ratation in 1 sec =

300

60
= 5

angle described in sec = 5 × 2 = 10 .

Q.5 (4)

Relation between linear acceleration (a
t
) and angular

acceleration () is :-

a
t
=  × R

so,
ta 10

R
5

 


= 2m

Q.6 (1)
v = r

r is perpendicular distance of particle from rotational
axis so correct option (1).

r v

v = r r is perpendicular distance of particle
from rotational axis so correct option (1).

Q.7 (4)

v r 
 

from above we get
v

r
  but

d

dt


  is not depend

on distance (r) from axis of rotation.

Q.8 (3)

As disc is lying in the x-z plane, so applying

perpendicular axis theorem :-

I
x

+ I
z
= I

y

30 + I
z

= 40

 I
z

= 40 – 30 = 10 kg m2

Q.9 (2)

mr2

Q.10 (4)

Q.11 (1)

2
22Mr

I Mr
2

 

Q.12 (3)

Given, I
solid sphere

= I
hallow sphere


2 2

1 2

2 2
Mr Mr

5 3



2

1

2
2

r 5

3r


 1

2

r
5 : 3

r


Q.13 (3)

I = I
A

+ I
B

+ I
C

B C

A

x'

x

Rotational Motion
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Rotational Motion

2
A

2
I MR

5


2 2 2
B C

2 7
I I MR MR MR

5 5
   


2 2 22 7 7

I MR MR MR
5 5 3

  

216
I MR

5


Q.14 (2)

x

y

z M, L

M, L

M, L

I = I
1

+ I
2

+ I
3

2 2
2ML ML 2

0 ML
3 3 3

   

Q.15 (1)

given, 
0

= 20 rad/sec

= 0

I = 50 kg-m2

t = 10 sec

0 0 20

t 10

  
  = –2rad/sec2

and  = I = 50 × 2 = 100 kg-m2/s2

= 100 N-m

Q.16 (4)
Given ; [ = 2N.m., = 2 rad/sec2, k = 2m]

22
I 1kg.m

2
 

I = MK2

I = m.22; m =
1

4
.Kg

Q.17 (3)

i f

dL
z 0, , L L

dt
 

Q.18 (1)

Initial Final

Applying conservation of angular momentum :-

I
1


1
= I

2


2

 1 2 2

1

2
I I

T


  


2

2

2
100 [100 50 (2) ]

10


    

on solving, 2

2

30


  rad/sec

Q.19 (3)
From L = constant

L = I
Because 

ext
= 0

Due to drop the wax on disc moment of inertia of its
will be increase so will be decrease.

Q.20 (2)


ext
= 0, So L = I = constant when girl moves from

edge towards centre I will decrease, and ‘’ will
increase.

Q.21 (2)

2

2 2

1
I

2f
1 1

I mv
2 2




 

where v = r and
22

I I mR
5

 

Q.22 (3)

Because sphare has maximum translational lurchi

energy first decrease in Potential energy.

Q.23 (2)

Acceleration of a purely rolling object on an inclined

plane is :-



68

Rotational Motion

2

2

gsin
a

K
1

R



 
  

for spherical shell,
2

2

K 2

3R


for solid cylinder,
2

2

K 1

2R


so, shell

cylinder

g sin

2
1

a 93

g sina 10
1

1
2



 
  

 


 
  

Q.24 (1)

2

2
Rotation

2
Total

2

K
K RFraction
K K

1
R

 



For disc,
2

2

K 1

2R
 ,

so, fraction

1

2 1: 3
1

1
2

 



JEE-MAIN

OBJECTIVE QUESTIONS

Q.1 (2)


0
= 3000 rad/min


0

=
3000

60
rad/sec = (50 rad/sec)

t = 10 sec


f
= 0


f
= 

0
+ t

 = 50 –  (10)

 = 5 rad/sec2

 = 
o

t +
2

1
 t2

 = (50) (10) +
1

2
(–10) (10)2

 = 500 – 250 = 250 rad

Q.2 (3)

V = R
V = 10 × 0.2 = 2m /sec.

Q.3 (3)
 = V


/r

 = 3cos/r

 = 2

3 8 24

r r r
 

InOAB

3m/s (15,8)

x

y

(0, 8)

r/V
r

O

A B

r2=(15)2+(8)2 = 289

=
24

289
rad/s

Q.4 (3)

m
A

= (r2.t)

m
B

=  (2r)2 (t/2) = (22t)

m
B

> m
A

R
B

> R
A

so, 
B

> 
A

Q.5 (1)

 =
2dmr

 = r2 dm = r2 m = mr2

Q.6 (1)


B
> 

A


B

> 
A

so, If the axes are parallel 
A

< 
B

Q.7 (3)
I

2
= I

1
+ Md2 Then I

2
> I

1

Q.8 (4)
Moment of inertia of the elliptical disc should be less
than that of a circular disc having radius equal to the
major axis of the elliptical disc.
Hence (4)

Q.9 (3)
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Rotational Motion


0

= 
1

+ 
2


0

=

 
2

m / 2
2

3

 
 
 



+

 
2

m / 2
2

3

 
 
 



=

2m

12



Q.10 (3)


x
+ 

y
= 

z

2
x

= 
z

 
I
= 2 × 200 = 400 gm cm2 .

Q.11 (4)
Moment of inertia of a body depends upon mass and
distribution of mass about the axis.

Q.12 (2)

I II1

Moment of inertia about

diameter of sphere I =
22

mr
5

Moment of inertia about tangent at their common

point
2 2 2

1

2 14
I mr mr 2 mr

5 5

 
    
 

I
1

= 7I

Q.13 (4)
Moment of inertia of disc

about diameter I =
2mr

4
= 2,

mr2 = 8

I I 1

Moment of inertia about the
axis through a point on rim.

2
2

1

mr
I mr

4
  = 10

Q.14 (1)

Moment of inertia of solid sphere
2

1 1

2
I mr

5


Moment of inertia of hollowsphere
2

2 2

2
I mr

3


2 2
1 2

2 2
mr mr

m 3
 

1

2

r 5

r 3


Q.15 (1)

M inertia about yy’ axis are
I = I

1
+ I

2
+ I

3
= 2I

1
+ I

3
( I

1
= I

2
)

2 2
2MR MR

2 MR
2 2

 
   

 

2
2MR

I MR
2

  
    

   
applying parallel axis

theorem = 7/2 MR2 = 7/2 PQ2.

Q.16 (4)

(1)
2Ma

2
(disc)

4 












 2

2

a.
4

m

12

)a2(

4

m

2a m
4

. (2a)
2

12

(2) Ma2(Ring)

(3)
2

3
Ma2(square lamina)

(4) 4 Rods forming a square of side 2a.

 4

2
2m (2a) m

.a
4 12 4

 
 

 

=
2ma

3
+ ma2 =

24ma

3

Q.17 (2)

O

R

I =
2MR

2

(pasing through 0)
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Q.18 (4)
M.O.I. about C.O.M. is Minimum
I = I

C.M.
+ Mx

0
2

I = 2x2 – 12x + 27


d

dx


= 4x – 12 = 0

 x = 3

Q.19 (2)

 = I
2mr

2
 

= 0.25rad/sec2

Q.20 (2)
 = I
 = constant  = increases

Q.21 (4)
 = 

0
+ t

100 = 10+(15)   = 6 rad/sec2

 = I60 Nm

Q.22 (4)
 = I
2 = I × 2  I = 1 kgm2

I = MR2

1 = M(2)2

1
M kg

4


Q.23 (1)

 2I mr  

Now, 
1

= (2m)
2 2r mr

4 2
   1

2


 

Q.24 (1)
 = 


A
= 

B


A


A
= 

B


B


A

< 
B


A

> 
B


A

> 
B

Q.25 (1)

1F


= 2i + 3j + 4k

2F


= –2i – 3j – 4k

Net force
net 1 2F F F 0  
  

the body is in

translational equilibrium.

1r


= 3i + 3J + 4k 2r


= i

2


= 1r


×
1F


= ˆ ˆ ˆ(3i 3j 4k)  × ˆ ˆ ˆ(2i 3j 4k) 



1 = ˆ ˆ ˆ ˆ ˆ ˆ9k –12 j – 6 j 12i 8 j – 12i 



1 = ˆ ˆ–4 j 3k

sw 2


= 2r


× 2F


= ( î ) × ( ˆ ˆ ˆ–2i – 3j – 4k )

= –3 k̂ + 4 ĵ

 1 2
ˆ ˆ ˆ ˆ4i 3k 3k 4j 0        

 

body in rotational equilibrium

Q.26 (3)

F = 4 î – 10 ĵ

r


= (–5 î – 3 ĵ )

= r


× F


= (– 5 î – 3 ĵ ) × (4 î – 10 ĵ )

= 50 k̂ + 12 k̂ = 62 k̂

Q.27 (3)



F = 2 î + 3 ĵ– k̂ at point (2,–3,1)

torque about point (0, 0, 2)



r =  ˆ ˆ ˆ2 i – 3 j k – k̂2



 =


r ×


F = ˆ ˆ ˆ ˆ ˆ ˆ(2i – 3j – k) (2i 3j – k) 



 = ˆ ˆ(6i 12k)



 = (6 5)

Q.28 (3)
torque of a couple is always remains constant about
any point

Q.29 (2)
Torque about O
F × 40 + F × 80 – (F × 20 + F × 60)
In clockwise direction
= F × 40

Q.30 (3)
N

1
=  N

2
,
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N
1

+ N
2

= mg , 
A

= o 

3 N
2

– 4 N
1

–
3

2
mg = o

Hence  =
1

3
Ans.

Aliter

Using force balance
f

1
= –N

1
N

1
+ f

2
= mg

(1)
f

2
= N

2
N

2
= f

1

N
2

= N
1

(2)
Using aq (1)
N

1
+ N

2
= mg

N
1

+ N
1

= mg

N
1

+ 2

mg

1

 
 
 

torque about point B  
B

= 0 For rotational
equilibrium
f

1
× 4 + mg (5/2 cos 53º) = 3N

1

4N
1

+
3mg

2
= 3N

1

3mg

2
= (3 – 4) N

1

3mg

2
= (3 – 4) 2

mg

1

 
 
 

3

2
= 2

3 – 4

1

 
 

  

3 + 32 = 6 – 8
32 + 8 – 3 = 0

32 + 9 –  – 3 = 0
3( + 3) –1 ( + 3)
 ( = 1/3)

Q.31 (2)
As shown in FBD  Equation in verticle direction
N

A
+ N

B
= mg

Taking moments about ‘A’
mg.x = d.N

B

N
B

=
mg.x

d

N
A

= mg – N
B

N
A

= mg –
mg x

d
= mg

d x

d

 
 
 

.= w
x

1–
d

 
 
 

Q.32 (1)

–x x



w1w

weight of object = w
w ( – x) = w

1
x

...........(i)
If weight is kept in another pan then :
w

2
( – x) = wx

...........(ii)
By (i) & (ii)

2

w

w =
1w

w
 w2 = w

1
w

2

w = 1 2w w .

Q.33 (3)
Body is rotating uniformly so resultant force on
particale is centripetal force which is horizontal and
intercecting the axis of rotation.

Q.34 (4)

N =
2m

2

 
 

 


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Q.35 (1)
Initial velocity of each point onthe rod is zero so
angular velocity of rod is zero.
Torque about O
 = 

20g (0.8) =
2m

3



 20g (0.8) =

220(1.6)

3



3g

3.2
=  = angular acceleration

  =
15 g

16

Q.36 (3)
Beam is not at rotational equilibrium, so force
exerted by the rod (beam) decrcase

Q.37 (2)

using energy conservation

mg
2


=

1

2
2

mg
2


=

1

2
.

m

3


2

 = 1m  =
3g



V
A

=  = 3g =  3g

Q.38 (3)

By energy conservation

mg
4


=

1

2
.

2 27
m

48

 
 

 


[ 
(about O)

=

22m
m

12 4

 
  

 

 


0

=
7

48
ml2  =

24g

7
Ans.

Q.39 (4)
Torque about B

x
6N

(3 – x)

A B

2N 4N

2 × 3 = 6 (3 – x)
6 = 18 – 6x
6x = 12

x = 2m

Q.40 (3)
By torque balance

16 L
1

= mL
2

....(1)
mL

1
= 4L

2

....(2)
16 × 4 = m2

m = 8kg

Q.41 (1)
 = I
 = constant
Its angular velocity increases
But force on hinge is constant

Q.42 (3)


avg

=
L

T




=

10

2
=5N-m

Q.43 (4)

x

f
r


sin

M
g

N
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f
r
= Mg sin  = Mg cos  f

r
.

a

2
= N.x = 

N

N

a
Mg sin

2
  

Q.44 (1)

F

3a/4
mg

xx

For topling about edge xx _________

F
min.

3a

4
= mg

a

2

F
min.

=
2mg

3
.

Q.45 (1)

To Balance torque N shifts Downwards

M
g sin



M
g

co
s 

Mg

f
N

O

Q.46 (2)

By work energy theorem

2
2L 1 mL

my
2 2 3
 

3g

L
 

Q.47 (4)

21
I 1000

2
 

10rad / sec 

2f = 10 
5 300

f rad / sec rad / min 
 

Q.48 (2)

P = 

 .

  P =  

t

Constant

P=

Q.49 (1)

Q.50 (4)

Q.51 (4)

Q.52 (3)
    = c

dw d c d     

dw c d  

21
w c

2
 

Q.53 (3)


 =

dL

dt



=
0 04A – A

4
=

03A

4

 
 
 

Q.54 (2)

Y

v

Xo

d

 L = (mvd) = constant
becouse v = const. and d = const.

Q.55 (4)

x = v
0

cos 45º × t =
0v t

2

 = mgx =
0mgv t

2
=

dL

dt
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 L =
0mgv

2

0v /g

0

t dt =

3
0mv

2 2 g

Q.56 (4)
L = 
' = 2

1

2








 2

2

1
=

1

2
' '2

2

2


= ´ 42

´ =
8

 
 
 

L´ = ´ ´ =
8


2 =

4


=  L

4

Q.57 (2)
No any external torque so L = constant;


1


1
= 

2


2

(MR2) = (MR2+2mR2) 
2

 
2

=
M

M 2m

 
 

 

Q.58 (3)

external torque ext


= 0


1


1
= 

2


2

when he stretches his arms 
so 

1
< 

2

then (
1

> 
2
)

so, (L = constant)

Q.59 (4)

Torque

Q.60 (3)

21
I 10

2
  

25
10 2rad / sec

2
    

Angular Momentum

L = I = 5 × 2 = 10 joule-sec.

Q.61 (2)

I
1


1
= I

2


2

2 2
1 1 2 2M R MR  

1 2

2 1

R 3

R 1


 



Q.62 (2)

Change in momentum = 2mV cos = F.dt
 Change in angular momentum

=  dt.Fd = 2m Vdcos

Q.63 (2)

2 2
2

2

1 1 R v
KE I

2 2 2 R

 
    

 

21
Mv

4

Total KE =
2 21 1

I mv
2 2
 

2 21 1
Mv m

4 2
  

23
mv

4

Ratio =
1

3

Q.64 (3)

For pure rolling R = u, v = 2 2u ( R)  =  u 2

Q.65 (2)

When A point travels  distance then B point 2 so,
2 length of string passes through the hand of the boy
.

Q.66 (1)

mg sin – f = ma
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a =
mgsin – f

m

 
 
 

.......(i)
a is same for each body.
f.R = 

2

f .R

mk
 

For solid sphere k2 =
2

5
R2 is minimum there fore 

is maximum hence, k.E. for solid sphere will be max
at bottom.

Q.67 (2)

a = 2

2

g sin

k
1

R

 
 
 
  
 

For solid sphere 
2

2

k 2

5R


For hollow sphere =
2

3
mR2 = mk2

2

2

k 2

3R


so k
s
< k

H

then a
s
> a

H

(so speed of solid sphere is greater then hollow
sphere)

Q.68 (1)
a = (g tan ) so net force along the indined plane is
zero so it will continue in pure rolling with constant
angular velocity.

Q.69 (4)

There is no relative motion between sphere and plank

so friction force is zero then no any change in motion

of sphere and plank.

Q.70 (1)

Due to linear velocity body will move forward before

pure rolling.

Q.71 (1)

Disk =
3 2

1

1 1
I mv

2 2
 

22
21
12

v1 MR 1
mv

2 2 2R
  2

1

3
mv

4


Ring =
2

2 2 2 22
2 22

v1 1 1 1
I mv mr mv

2 2 2 2R
     = 2

2mv

2 2
1 2

1
mv mv

4


1/ 2

1

2

v 4

v 3

 
 
 

Q.72 (4)
  = 0

a = gsin, t =
2h

gsin

Q.73 (3)

2V

R
=

2(2V)

R

2V

R

V2

R = 4R

Q.74 (3)

90º

Spherical shell

h

mgh =
1

2
Iw2 +

1

2
mV2 , I

shell
=

2

3
MR2

mgh =
1

2
×

2

3
MR2 .

2

2

V

R
+

1

2
MV2

mgh =
1

3
MV2 +

1

2
mV2

mgh =
5

6
mV2  V2 =

6gh

5

Q.75 (1)

F


= Ma

F

aR

Smooth
Surface

M

R
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 a =
F

M

For pure rolling
a = R
F × R = I

 =
FR



F

m
=

FR.R



I = MR2

MR2 is the moment of inertia of chin pipe.

Q.76 (4)

Q.77 (3)

f
sin

mg


sin

mg

f

Q.78 (1)

0 Circular dise

V0
O

Of

 is conserved about 0


0
– mVR = 0  

0
= mVR

2MR

2


0
= mV

0
R


0

= 02V

R


0

0

V

R =
1

2

Q.79 (4)

As the inclined plane is smooth, the sphere can never

roll rather it will just slip down.

Hence, the angular momentum remains conserved

about any point on a line parallel to the inclined plane

and passing through the centre of the ball.

Q.80 (2)

J

VCOM

V=
2

L
VCOM





L/2

L/2

m

J = MV
COM

 V
COM

=
J

M

J
L

2
=

2ML

12


V =
J 6J L

M ML 2


J =
MV

2

Q.81 (4)
(a) M is instantaneous axis of Rotation (I.A.R.) (b)

Magnitude is same but direction is different

Q.82 (3)

V2

V1










 21

1

VV

LV

Q.83 (1)

Moment of inertia of disc =
2mr

2
= 0.5 mr2

Moment of inertia solid sphere =
2

5
mr2

Q.84 (2)
M.I. = mr2 = 4 × 12 = 4 kg m2.

Q.85 (4)
P = 

Q.86 (4)

L


= m (
!

r ×
!

V )

= 2 × 2 [( î + ĵ ) × ( î – ĵ + k̂ )]

= 4 (– k̂ – ĵ – k̂ + î ) = 4( î – ĵ – 2 k̂ )

L


= Angular Momentum along z-axis is the

compoent of angular momentum along z-axis.

i.e. = – 8 kg-m2/sec
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JEE-ADVANCED
OBJECTIVE QUESTIONS
Q.1 (D)

Given aA = 2  = 5 m/s2

  = 5/2 rad/s2

 aB = 1.() = 5/2 m/s2

Q.2 (B)
The given structure can be broken into 4 parts

For AB  = 
CM

+ m × d2 =
2

2m 5m

12 4



 ;


AB

=
4

3
ml2

For BO  =
2m

3



 For composite frame :(by symmetry)

 = 2[
AB

+ 
OB

] =

2 24m m
2

3 3

 
 

 

 
=

10

3
ml2.]

Q.3 (D)
Pearpendicular axis theorem


2

= 
x

+ 
y

=
2mr

2

from symmetry 
x

= 
y

 
x
=

2mr

4

Perallel axis theorem


oo´
= 

x
+ mr2

=
2mr

4
+ mr2 =

5

4
mr2

Q.4 (B)
M of the system w.r.t an axis  to plane & passing
through one corner

=

2ML

3
+

2ML

3
+

2
2ML 3 L

M
12 2

  
       

=

22ML

3
+

2 2ML 3ML

12 4

 
 

 

=

22ML

3
+

210 ML

12
=

23ML

3
=

218ML

12

=
3

2
ML2

Now
3

2
ML2 = 3k2

k =
2


[ Ans.:

2


]

Q.5 (D)

 = 
1

+ 
2

+ 
3


1

= 
2

=
3

2
mr2


3

=
2mr

2

  = 
1

+ 
2

+ 
3

=
7

2
mr2

Moment of inertia = 3mk2 where k is radius of
gyration.

3mk2 =
7

2
mr2  k =

7

6
r

Q.6 (D)

Taking mass of plate m =
M

6

Then M of two plates through which the axis is
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passing =
2ma

6
× 2 =

2m a

3

M. of 4 plates having symmetrical position from the

axis

= 4 ×

22ma a
m

12 2

  
  

   
= 4 ×

2ma

3

 
 
 

Total M =
24m a

3
+

2m a

3
=

25m a

3

using
M

6
= m = M =

25Ma

18

Q.7 (D)

Taking cylindrical element of radius r and thickness

dr

dm = 2 2
2 1

M

(R R )   × (2r  dr)


AB

= ed  =
2dm r

=

2

1

R

3

2 2
2 1R

2M
.r dr

(R R ) =
2 2
2 1

1
M(R R )

2


Using parallel axis theorem

I
XY

=
2 2
2 1

1
M(R R )

2
 + MR

2
2 =

2 2
2 1

M
(3R R )

2


Q.8 (A)
By perpendicular axis theorem moment of inertia
about any axis passing through centre and in the plane
of plate will be  (by symmetry)

Q.9 (B)

Cylinder =
2MR

2
, Square lamina =

2MR

6
,

Solid sphere =
5

2
MR2

Q.10 (C)

I2
I1

x

y

Ix =
2ML

12
; Iy =

2ML

12

Ix + Iy = Iz = I1 + I2

22.M.L

12
= 2I1  I1 =

2ML

12

Q.11 (C)

P Q

S R

In case PQR
r is larger.

Q.12 (B)

ax
is

I1

L r
30º 2

L
15º

L

15º

I1

I2

r =
L

2
cos 30º I1 + I2 =

2ML

6

=
L 3

2 2
 I1 =

2ML

12

 I =
2ML

12
+

2M.L .3

8
=

2 22ML 9ML

24



I =
211ML

24

The figure shows an isosceles triangular plate of mass
M and base L. The angle at the apex is 90°. The apex
lies at the origin and the base is parallel to X - axis.
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Y

M



X

Q.13 (C)

r  


F


= (– b î – c k̂ ) × a ĵ

= (– b k̂ – c(– î ))

= –b k̂ + c î

Q.14 (C)


A
= 0

T
1

×
3L

4
– mg

L

2
= 0 ....(1)

T
1

=
2mg

3

T
1

+ T
2

= mg ....(2)

T
2

=
mg

3

1

2

T 2

T 1
 Ans.

Q.15 (D)
In equilibrium, torques of forces mg and Mg about
an axis passing through O balance each other.

mg.
L

2
cos30° = Mg

L

2
cos60°


M

3
m



Q.16 (C)
For rotational equilibrium

N
1

×
4


= N

2
×

6



N
1

: N
2

= 4 : 3

Q.17 (C)

Balancing torque about the centre of the rod :

N1 .
4


– N2 .

4


= 0  N1 = N2.

Q.18 (C)

net
ˆ ˆF (400 100)i (200 200) j   


= ˆ ˆ300i 400 j

 | F |


= 500 N

Angle made by
netF


with the vertical is  = tan–1

300

400

 
 
 

= 37°

also = 500 R therefore point of application of the
resultant force is at a distance R from the centre.
Hence (C).

Q.19 (B)
For the circular motion of com :

mg = m
L

2

 
 
 

2   =
2g

L

Note : Since the reaction at the end is zero, the
gravitational force will have to provide the required
centripetal force.

Q.20 (B)
Let  be the angular acceleration of rod and a be
acceleration of block just after its release.
 mg – T = ma ..... (1)

T – mg
2


=

2m

3



.... (2)

and a =  .... (3)
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Solving we get

T =
5mg

8
and  =

3g

8

Q.21 (B)

x = 0
x

N1 N2

1m 4m 1m

Mg
A B

N1 + N2 = (M + m) . g
B = 0
N1 . 4 = Mg × 2+ m (5 – x)

Q.22 (B)

COM

2/3 L
N

A

L

C

45º

23

L

B
T

2

L

Net force = 0
T + N = Mg
....(1)
Net torque about B = 0


B
= 0

N.L = Mg .
2

3
L,

2
N Mg

3


Q.23 (A)

The tendency of rotating will be about the pont C.

For minimum force, the torque of F about C has to

be equal to the torque of mg about C.

 F
3

a
2

 
  
 

= mg
a

2

 
 
 

 F =
mg

3
Ans.

Q.24 (B)
For maximum a, normal reaction will shift to left most
position.

for rotational equilibrium 
P

= = 0 [in frame of truck]

ma
2


= mg

b

2
 a =

gb



Q.25 (B)

fmax =
1

2
Mg

Mg/3

Mg/3

Mg

N

f = Mg/3
Torque Balance

Mg

3
.

a

2
+

Mg

3
.

a

2
= N. x

Mga

3
= mg x  x =

a

3

Q.26 (A)

b

f

N

F

3b/4

A

Mg

fmax = N
....(1)
f = F
....(2)
A = 0
....(3)

F.
4

b3
= Mg.b/2

f = F = 2 Mg/3
 f > N  2Mg/3 > . Mg

 >
2

3
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Q.27 (C)

For (rod + particle) system :

2 2

2

1 m v

2 3

  
  
  



 +
1

2
mv2 = 2 mg

3

2

 
 
 



[Since, com will finally reach a height
3

2
4

 
 
 


]

 v = 4.5g

Q.28 (A)

Decrease in PE =

Increase in rotational K.E

 2mg.
2


– mg.

2



=
1

2
 . 2 =

1

2

2

2m m.
4 4

 
 

 

 
2

mg

2


=

1

2
.

23m

4


.  =

23m

8


2

 =
4g

3
and v = r =

2

 4g

3
=

g

3





[ Ans.: (a) V = g / 3 ,  = 4g / 3 ]

Q.29 (C)

 =
3g

L

By Energy Conservation

1

2

M

2 3
×

2
L

2

 
 
 

×
3g

L


L/4

L/2

L/4

=
Mg

2

L

4
(1 – cos )

2ML

4L
× g =

MgL

2
(1 – cos )

cos  =
1

2
  = 60º

Q.30 (D)


 × 

L

then



 || 

L

so L
 
 
 

may increase

Q.31 (C)

1st method : The direction of L is perpendicular to

the line joining the bob to point C. Since this line

keeps changing its orientation in space, direction of

L keeps changing however as is constant, magnitude

of L remain constant.

2nd method : The torque about point is perpendicular

to the angular momentum vector about point C. Hence

it can only change the direction of L, and not its

magnitude.

Q.32 (A)

1st method : The angular momentum about axis CO

is the component of angular momentum about point

C along the line CO. This is constant both in direction

and magnitude.

2nd method : Torque about axis CO is zero hence L

about CO is constant in both direction and magnitude.

Q.33 (D)
Conserving the angular momentum : about the hinge

mua =

2 2
2m(a 4a ) 5

ma
12 4

 
  

 

  =
3

5

u

a
Ans.

Q.34 (B)
Since the work done is independent of the
information about which point the rod is rotating,

by work-energy theorem the kinetic energy will also
be independent of the same.

Hence (B)

Q.35 (A)
By conservation of angular momentum about hinge
O.

L = 
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mv
d

2
=

22Md d
m

12 2

  
   

   



2 2mvd md md

2 2 4

 
   
 

2mvd 3
md

2 4
  

2 v

3 d
 

Q.36 (D)

– T.dt = m.v – m × 5

...(1)

T.dt . r =
2mr

2
. 

...(2)

 =
v

r
...(3)

T.dt =
mv

2

5m – mv =
mv

2
, 5 =

3v

2
, v =

10

3

m

sec

Q.37 (C)
Angular momentum conservation
MVR = (MR2 + MR2) . 

V

2R
= 

Q.38 (A)

. dt = I – 0

10 × 1 =
22 (1)

3


×   15 rad/sec

 = 15 rad/sec

K.E. =
1

2
×

22 (1)

3


× (15)2 = 75 Joule

Q.39 (D)
(I + mR2) .  =  + mvR

 =
2( mR ). mVR  


Q.40 (A)

V0

m

m



1 2

1 2

(V V )
e

u u

 
  

 
,  =

L
0

2
V





L

2


= V

mVL

2
=

2ML

3
.  

mVL

2
=

2ML

3
×

2V

L


M

m
=

3

4

Q.41 (C)
Immediately after string connected to end B is cut,
the rod has tendency to rotate about point A.
Torque on rod AB about axis passing through A and
normal to plane of paper is

2m

3


 = mg

2


 =

3g

2

Aliter : Applying Newton’s law on center of mass

mg – T =ma
.....(i)
Writing  = I about center of mass

T
2


=

2m

12



....(ii)

Also a =
2


 ....(iii)

From (i) , (ii) and (iii)

 =
3g

2

Q.42 (C)

Friction will at forward dir so body will always move
in forward dir.
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Q.43 (D)
FBD for sphere & block

a1

fr

m

m

fr

a2

a
1

=
rf

m
=

mg

m


a

2
=

rf

m
=

mg

m



1
ˆa gi 



2
ˆa gi 



rel 1 2
ˆa a a 2 gi   

  

a
rel

= 2g.

Q.44 (C)
Using Energy conservation,
(at maximum distance V = 0 V

0
= 0)

1

2
Kx2 = (mg x sin )

x =
2mgsin

K

 
 
 

Q.45 (A)

20 = V
cm

+ wR

20 = 10 +  








2



10 =
2



( = 20 rad / se)

Q.46 (D)
Since the two bodies have same mass and collide
head-on elastically, the linear momentum gets
interchanged.
Hence just after the collision 'B' will move with
velocity 'v

0
' and 'A' becomes stationary but continues

to rotate at the same initial angular velocity
0v

R

 
 
 

.

Hence, after collision.

(K.E.)
B

=
2
0

1
mv

2

and (K.E.)
A

=
21

2
 =

2

2 0v1 2
mR .

2 3 R

  
   
   


B

A

(K.E.) 3

(K.E.) 2
 Hence (D).

Note : Sphere 'B' will not rotate, because there is no
torque on 'B' during the collision as the collision is
head-on.

Q.47 (B)
Disc in pure rolling and external force zero after
smooth surface pure rolling continue.

Q.48 (A)
Just before collision Between two Balls
potential energy lost by Ball A = kinetic energy gained
by Ball A.

h
mg

2
=

2 2
cm cm

1 1
mv

2 2
  

=

2

2 2cm
cm

v1 2 1
mR mv

2 5 R 2

 
   

 

=
1

5
2
cmmv +

1

2
2
cmmv


5

mgh
7

= 2
cmmv 

mgh

7
=

1

5
2
cmmv

After collision only translational kinetic energy is
transfered to ball B
So just after collision rotational kinetic energy of

Ball A =
1

5
2
cmmv =

mgh

7

Q.49 (C)
Let velocity of c.m. of sphere be v. The velocity of
the plank = 2v.

Kinetic energy of plank =
2

1
× m × (2v)2

= 2mv2

Kinetic energy of cylinder

=
1

2
mv2 +

1

2
+

2 21
mR

2

 
 

 

=
21 1

mv 1
2 2

 
 

 
=

23 1
. mv

2 2
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
K.E. of plank

K.E. of sphere
=

2

2

2mv

3
mv

4

=
8

3
.

Q.50 (C)
The horizontal shift of end x will be double the shift

of centre of spool. Hence centre travels by
S

2
.

Q.51 (D)

Torque about COM
f.R =  ·  (a = R)

f.R =
2mR

2
a =

2mR
·R

2

 
 
 


ma

f
2

 
 

 

Q.52 (B)

f = 4 ma .... (1)
(mg – f)r = (3 mr2 + mr2) 
mg – f = 4 ma .... (2)
from (1) and (2)

 8 ma = mg

 a =
g

8
  =

g

8 r

Q.53 (B)

Here, u = V0, 0 = 0V

2R


At pure rolling ;

V = V0 –
fF

m

 
 
 

t

&
V

R
=

0 fV F

2R m.R

 
  

 
t (In pure rolling V = R)

( =



=

f
2

F .R

mR
)

 V0 – V = V + 0V

2

 2V = 0V

2
 V = 0V

4
Ans.

Q.54 (D)
As the disc is in combined rotation and translation,
each point has a tangential velocity and a linear

velocity in the forward direction.
From figure
vnet (for lowest point = v – R= v – v = 0.

and Acceleration =
2v

R
+ 0 =

2v

R

(Since linear speed is constant
Hence (D).

Q.55 (A)

Angluar momentum conservation about contact point

muR = (
A
)

I
A

=

2
2mR

mR
2

 
 

 
+ m  

2

2 R =
27

mR
2

 =
2

muR

7
mR

2

=
2u

7R
Ans.

Q.56 (A)

Since there is no slipping at any interface, the
velocities of bottom and upper most point of lower
and upper cylinder are shown in figure.

Angular velocity of upper cylinder =
2V V

2R


=

3V

2R

Angular velocity of lower cylinder =
V 0

2R


=

V

2R

The ratio is
3

1



85

Rotational Motion

Q.57 (D)

Torque about point A

T
A

= Fr  d
2 + F

2
(d)

1
A = Fr

3d

4

 
 
 

+ F
1

(d)

(F
1

+ F
2
)

d

2
+ F

2
d = (F

1
+ F

2
)

3d

4

 
 
 

+ F
1
d

1 2F F

2


+ F

2
= 1 2 1

3 3
F F F

4 4

 
  

 

1F

2
–

3

4
F

1
– F

1
=

2
1 2

F3
F F –

4 2

 
 

 

1
1

–F
– F

4

 
 
 

=
2 2–F F

–
4 2

 
 
 

15F

4
= 23F

4

5F
1

= 3F
2

1

2

F

F =
3

5

 
 
 

.

Q.58 (C)

Q.59 (A)

f

f F

Q.60 (D)
Due to torque of friction about CM  eventually de-
creases to zero, initially there is no translation. Fric-

tion is sufficient for puse rolling therefore after
sometime pure rolling beging. There is no external
force in × direction therefore momentum is conserved
along × direction.

Q.61 (D)

a =
5gsin

7



(i) 25 =
1

2
a t2Q to 0 ...(1)

5 =
1

2
a t2P to 0

...(2)

tQ to 0 =
45

a

tP to 0 =
25

a

(ii) Mg sin – f = ma
fR = I

mg sin –
R


= ma

h

O

5

P

5

Q

2h

mg sin = I
R


+ ma a R

mg sin = 2

a

R


+ ma

mg sin = a 2
m

R

 
 

 

a =


 
 

 
2

mgsin

m 1
mR

I =
2

5
mR2

a = 2

2

gsin

2 MR
1

5 MR




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a =
gsin

2
1

5




=

5gsin

7



(iii) K.Eat O from P = mgh
K.Eat O from P = 2 mgh

Q.62 (C)

mgh =
1

2
2 +

1

2
mV2



O

h

mgh =
1

2

2
2

2

V
mR

R

 
 

 
+

1

2
mV2

2mgh = mV2 (1 + C)

V2 =
2gh

1 C

K.E. =
1

2
mV2 =

2

1
m .

2gh

1 C
=

mgh

1 C

K.Ering =
mgh

1 1
=

mgh

2

K.Ecoin =
mgh

1
1

2


=
2

3
mgh

K.Esolid sphere =
mgh

2
1

5


=
5

7
mgh

Ratio =
1

2
:

2

3
:

5

7
= 21 : 28 : 30

Q.63 (B)

 =
a

R
F – f = Ma

f
R

a

F



f . R – F.r = I. 
assumed direction of friction is same so spool

rotates clockwise and thread winds.

Q.64 (B)
For pure rolling

CD AB= BC

B

A



Mg sin  – f = Ma

f . R =
2MR

2
.

a

R

Mg sin  =
3Ma

2
 a =

2gsin

3



Now
L

2
=

1

2
.

22gsin .t

3



VB
2 =

2 2gsin

3

 
×

L

2
=

2gsin L

3



B =
BV

R

 VC
2 – VB

2 = 2g sin .
L

2
= gL sin 

VC
2 = g sin L +

2gLsin

3



=
5gLsin

3



 Rotational kinetic energy =
1

2
.

2MR

2
.

2
B
2

V

R

=
1

2
.

M.2gsin L

3



Q.65 (D)
Q.66 (D)
Q.67 (A)

2M

V

V
2V

V

V

M

M
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=
1

2
MV2 +

1

2

2 2

2

MR V

R


+

1

2
M(2V2) +

1

2

M(2V)2 +
1

2
. 2M (2V)2

= 6MV2

Q.68 (C)

Angular momentum conservation (about A)

V0

A

0

2

5
MR20 = MV0R 0 05V 2 R 

Q.69 (B)

When ball at maximum height block and ball has equal

velocity So Using momentum conservation

P
i
= mv

P
f
= 2mv

0
(v

0
final velocity)

P
i
= P

t

mv = 2 mv
0

V
0

=
V

2

 
 
 

Using energy conservation

1

2
2 +

1

2
mv2 =

1

2
2 +

1

2
2mv

0
2 + mgh

( = mR2)

v = R

1

2
mv2 =

1

2
2mv

0
2 + 2mgh

v2 – 2
2v

4
= 2gh

2v
h`

4g

 
 

 

Q.70 (D)
As torque = change in angular momentum
 F  t = mv (Linear) + ..... (1)

and F
2

 
 

 


t =

2m

12



(Angular) ..... (2)

Dividing : (1) and (2)

2 =
12v


  =

6v


Using S = ut :

Displacement of COM is
2


= t =

6v 
 
 

t

and x = vt

Dividing
2x


=

6



 x =
12


 Coordinate of A will be , 0

12 2

 
  

 

Hence (D).

Q.71 (C)
Angular Momentum conservation about C.O.M.

0.5Vt
t

tsinb5.0 

tcos5b.0 

m

m

y

x

2m.v.
b

2
+ mv

b

2
=

2b
2m. .

4

 
 

 
+ 0


3mvb

2
=

2mb
.

2


3V

b


L.M.C. 2mV – mV = 2mV
V = 0.5 V
x= 0.5Vt + 0.5b sin t

y = 0.5 cost where =
3V

b

Q.72 (B)

A

mV0

A
VCM



C

x

M

2

L
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L.M.C. mV0 = MVCM
A.M.C. (A)

mv0x =
2ML

12


L

2


= VCM 

L
x

6


Q.73 (D)
J = M.VCOM

t

J/M

M

J
VCOM 



J

VCOM

6

L 6

L
VCOM

A



B

+

 VCOM =
J

M

J.L

2
=

2ML

12



  =
6J

ML

t =
6J

ML
.

ML

12J


=

2




2J
V

M


Q.74 (C)

30º

MM

COM
MV

Ldt change in angular momentum


L
MVsin30º

2
=

22ML

4

 V

2L
 

Q.75 (B)

J.
L

2
= I


VCOM

VCOM +
2

L

L/2

A

L/2

J
m

m

B

J.
L

2
= 2

2ML

4
.  =

J

ML

J = 2M VCOM

VCOM =
J

2M

Now, VA =
J

2M
+

J

ML
.

L

2
=

J

M

Q.76 (C)

v2m



2

3
mR2 + mvR + mvR =

8

3
mvR

Water is at rest w.r.t centre.

Q.77 (C)

F=2t

r

R

A

2t – f = 0
A = wt (R + r)

L

0

dL =

t

0

2t(R r)dt
L = (R + r) t2

Q.78 (D)
For rigid body separation between two point remains
same.

v
1

cos60° = v
2

cos30°

1v

2
= 23 v

2
 v

1
= 3 v

2


disc

=
2 1v sin 30 v sin 60

d

  
=

2 1v 3v

2 2
d


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=
2 2v 3 3v

2d

 
=

22v

2d
=

2v

d


disc

=
d

v2

Q.79 (B)

L/4

2

L

8

L

8

L
4

L

There is no force in Horizontal direction C.O.M. will
remain constant

4

L

4

L

O

Quarter circle

4

L
with Radius

O

It is not circle

8

L

3L
8

Q.80 (C)

IAR

60º

60º

30º

2/

2/

 =
V

sin
=


v2

Sphere is rotating about a diameter
so a = R

but, R is zero for particles on the diameter.

Q.2 (A, B, C)

Using perpendicular theorem


0
= 

4
+ 

3


3
= 

4


0

= 
1

+ 
2


2

= 
1


3

= 
2

so, (
0

= 
1

+ 
3
)

Q.3 (A,B,C,D)
I1 + I3 = I2I1 = 2I3 = I
I2 + I4 = I, 2I2 = 2I4 = I
I1 = I2 = I3 = I4 = I

Q.4 (A, D)
(1) For no slipping

µmg cos mg sin .........(1)
For toppling

mg sin
2

h
 mg cos.

2

a

.........(2)
for minimum µ (by dividing)

µ.
a

2
=

h

2

µ
min

=
h

a
.

[ Ans.: a/h ]

(2)

If f > mg sin 
mg cos  > mg sin 
( > tan ) block will topple before sliding
torque about point A 

A
=0

mg sin   
2

h = mg cos
2

a

tan  =  
h

a

 >  
h

a

If  > tan  (block will slide)

Q.5 (B, C)

d

x d – x

NA NB

BA w

Q.1 (A, B, C)
MCQ/COMPREHENSION/COLUMN MATCHING

JEE-ADVANCED
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NA + NB = W

W(d – x) = NA . d

Q.6 (B, C, D)

Body is in equilibrium

So net = 0

or

Fnet = 0

Q.7 (A, B, D)

A

h
V

A

N
(shifted
normal
reaction)f

mg

w
xR

Angular momentum is not conserved

Q.8 (A, B, C)

(A) KE =
2

1
2

I depends on m
 KE depends on m

M

a
m

b

y-axis

x-axis

M

(B)
axisy = 2Ma2

K.E. =
2

1
× 2Ma22 = Ma22

axisz = 2(Ma2 + mb2)

K.E. =
2

1
I2 = )mbMa( 22  2

Q.9 (A, B)
In absence of external force linear momentum and
angular momentum remains const.

Q.10 (B, C)
External force will act at hinge so linear momentum
of system will not remain const. but torque of external

force is zero about hinge so


L = const., collision is
elastic so K.E = const.

Q.11 (A, B, D)

at the moment when ring is placed friction will act

between them due to relative motion. Friction is

internal force between them so angular momentum

of system is conserved.

I
1


1
= I

2


2

2

mR2


0

= 













 2

2

mR
2

mR

 =
3
0

Q.12 (A,C,D)
 is constant(mgr)

A r

Q.13 (A,C,D)

Q.14 (A, C, D)

for pure rolling
V = R
V

A
= 0

V
B

= 2 V

(V
C

= 2V)

Q.15 (A, C)
If bicycle is accelerating on a horizontal plane then
friction on front wheel will be backward and on rear
wheel it will be in forward direction.
But if bicycle is accelerating down an inclined plane
then friction on rear wheel may be backward or
forward both.
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Q.16 (B,C,D)
After B there is no friction
 Fnet  or acceleration 
F – f= ma

f . R =
2mR

2
.

R

a

f =
2

ma
acceleration became doulble

Q.17 (A,C,D)

Q.18 (B, C)
Velocity of COM is zero

v

v

 =
R

v

Q.19 (A,B,D)
(A) Change in Angular Mom.

V0

O

= Lf –Li
= ( – mV0R) – ( + mV0R)
= – 2mV0R
(B) Impulse = Change in momentum
= – 2mV0R

Q.20 (C, D)
All points in the body, in plane perpendicular to the
axis of rotation revolve in concentric circles. All
points lying on circle of same radius have same speed

(and also same magnitude of acceleration) but
different directions of velocity ( also different
directions of acceleration)

Hence there cannot be two points in the given plane
with same velocity or with same acceleration.
As mentioned above, points lying on circle of same

radius have same speed.
Angular speed of body at any instant w.r.t. any point
on body is same by definition.

Q.21 (A, B, C)
By angular momentum conservation ;

L =   mv
2

R
+ mvR = 2mR2

2

3
mvR = 2mR2

 =
R4

v3

Also as the time of contact ;

mgcos – N =
R

mv2

 N = mg cos –
R

mv2

when it ascends  decreases so cosq increases and v
decreases.

 mgcos is increasing and
R

mv2

is decreasing

 we can say N increases as wheel ascends.

Q.22 (B)

Let the angular speed of disc when the balls reach the

end be . From conservation of angular momentum

2

1
mR2 

0
=

2

1
mR2 +

2

m
R2  +

2

m
R2 

or  =
3
0

Q.23 (C)

The angular speed of the disc just after the balls leave

the disc is

 =
3
0

Let the speed of each ball just after they leave the

disc be v.

From conservation of energy

2

1







 2mR
2

1


0
2

=
2

1







 2mR
2

1
2 +

2

1









2

m
v2 +

2

1









2

m
v2
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solving we get

v =
3

R2 0

NOTE : v = 2
r

2 v)R(  ; v
r
= radial velocity of

the ball

Q.24 (D)

Workdone by all forces equal

K
f
– K

i
= 









2

m

2

1
v2 =

9

mR 2
0

2

Q.25 (D)

Q.26 (C)

Q.27 (A)
The free body diagram of plank and disc is
Applying Newton's second law

F – f = Ma
1

.... (1)
f = Ma

2

.... (2)

FR =
2

1
MR2 

.... (3)

from equation 2 and 3

a
2

=
2

R

From constraint a
1

= a
2

+ R
 a

1
= 3a

2

.... (4)

Solving we get a
1

=
M4

F3
and  =

MR2

F

If sphere moves by x the plank moves by L + x. The
from equation (4)

L + x = 3x or x =
2

L

Q.28 (C)

Q.29 (A)
Q.30 (C)
Q.31 (C)

Q.32 (B)
By conservation of any momentum,
Iw + Imm = constant.]

Q.33 (C)

T =
g

sinu2 
= 3.6 sec.

Q.34 (A)

0.4 ×
3.0

300
= 0.4 × 160 + 20 

40 = 64 + 20 
 = –1.2 rad/s
 = t = 1.2 × 3.6 = 4.32 rad

Q.35 (B)

20º

L

Direction of velocity of all points

on the rod is perpendicular to the plane outwards

Q.36 (B)
As angular velocity is uniform so angular acceleration
is zero which means there should be no torque in
vertical direction]

Q.37 (A) p,q,r (B) p,q,r (C) p,q (D) p,q,r
Since all forces on disc pass through point of contact
with horizontal surface, the angular momentum of disc
about point on ground in contact with disc is
conserved. Also the angular momentum of disc in all
cases is conserved about any point on the line passing
through point of contact and parallel to velocity of
centre of mass.
The K.E. of disc is decreased in all cases due to work
done by friction.
From calculation of velocity of lowest point on disc,
the direction of friction in case A, B and D is towards
left and in case C is towards right.
The direction of frictional force cannot change in any
given case.

Q.38 (A) p (B) q,s (C) p (D) q,s
(A) Speed of point P changes with time
(B) Acceleration of point P is equal to 2x ( =

angular speed of disc and x = OP). The
acceleration is directed from P towards O.

(C) The angle between acceleration of P (constant in
magnitude) and velocity of P changes with time.
Therefore, tangential acceleration of P changes
with time.

(D) The acceleration of lowest point is directed
towards centre of disc and remains constant with time
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NUMERICAL VALUE BASED
Q.1 [2]

CM at 0.1

37°
cm0.1

0.2

4

2

Li = Lf
2 × 0.5 × 0.2 sin 37°

= –1 × 0.5 × 0.2 cos 37° +
42

42




× (0.3)2 

0.2 ×
5

3
+ 0.1 ×

5

4
=

6

8
× 0.32 

 =
3

5
= 1.67 rad/s ~ 2 rad/s

Q.2 [7]
Conservation of angular momentum about the fixed
axis.
4600 × 1 + 1 × 80 × 5 = (4600 + 80 × 12) × 

f


f

= 32/468
 = 0.068
6.8 × 10–2 = 7 × 10–2

Q.3 [5625]

2

1
× 15 × 22 × 2 = 








 22 12215

2

1


32

60
=   =

8

15
rad/s

K =
2

1
× 32 ×

64

225
=

4

225
J = 56.25 J

Q.4 [7]
Angular momentum conservation

2 








2

d
Mv = 






































22

2

d
M2

12

Md

  =
d7

v12

KEi = 2 






 2Mv
2

1

 KEf =
2

1
I2 =

2

1














12

Md7 2

2

KE =
7

1
Mv2 

KE

KE i


= 7

Q.5 [5]

Lfinal = 0

Linitial = RmvmR
5

2
00

2 

R2

v5 0
0  or

)05.0(2

v5 0
0




 = 5 rad/sec.

Q.6 [12]

cons. of E 
2

1 22 wm
12

1








 =

2

1
mv2 +

2

1
MV2

m

M



w

m

M

V

cons. of P  O = MV – mv

cons. of L  






 2m
12

1
 w = O + MV

2



L around initial mid point of stick
Three egs, there unknown (v, V, M)

E :
2

1
Iw2 =

m2

p2

+
M2

p2

L : Iw = P
2


 P =



Iw2

2

1
Iw2 =

2
Iw2





















M2

1

m2

1

 1 = 2

I4












M

1

m

1

 I =
2

2m
12

1
4



 


















M

1

m

1
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 3 = 1 +
M

m
 M =

2

m

Q.7 [5]
Let N be the normal force between the stick and the
circle, and let Ff be the friction force between the
ground andthe circle (see figure). Then we
immediately see that the friction force between the
stick and the circle is also Ff, because the torques from
the two friction forces on the circle must cancel.


R



N

Ff

Ff

Looking at torques on the stick around the point of
contact with the ground, we have Mg cos  (L/2) =
NL, where M is the mass of the stick and L is its length.
Therefore, N = (Mg/2) cos . Balancing the horizontal
forces on the circle then gives N sin  = Ff + Ff cos .
So we have

Ff =




cos1

sinN
=

)cos1(2

cossinMg





But M = L, and from figure. we have L = R/tan (/2).
Using the identity tan (/2) = sin / (1 + cos ), We
finally obtain

Ff =
2

1
g R cos .

Q.8 [25]
Cylinder will topple about right bottom

h/2

m R
(centrifugal force
in disc frame)

2

2

h
mw2R 

2

D
mg

w2 
Rh

Dg

wmin =
Rh

Dg

Q.9 [6]

f = mg ×
8

R3
cos 60°

30°

60°

mg

3R/8

30°

N1

N2

60°

N2 = f
N1 = mg

f =
16

mg3

f  µN1

µ 
16

3
 32µ = 6

Q.10 [84]
m1 = 9 gm ; m2 = 42 gm ; m3 = 84 gm

Q.11 [100]

kx
70g

40g

T2T1

T1

T2

T1 = 70g + kx ...........(i)
T2 = 40 g ...........(ii)
T1 (0.3) = T2 (0.6) ...........(iii)

 70g + kx = 80g
kx = 10 g  x = 1m

Q.12 [11]

 = 19 ×
100

20
–12 ×

100

5
= (3.8 – 0.6) N–m

= 3.2 N–m (anticlockwise)

 =
I


=

32

2.3
= 0.1 rad/sec2 ;  = 

0
+ t

 10 rad/sec + 0.1 ×10 rad/sec ; 11 rad/sec.

Q.13 [50]

20 × 0.1 – 50 × 0.03 =
2

1
mR2



95

Rotational Motion

2 – 1.50 =
2

1
× 2 × (0.1)2 

0.5 = 0.01 

so rad / sec2 (anticlockwise)

2nd Method

Taking outwords as (+ ive)

 = + 20 × 30N-cm – 50 × 3 N-cm

= 50 N-cm = 0.5 N-m

I =
2

MR 2

 = I   =
I


= 22 kgm)1.0(2

2mN5.0





= 50 rad/s2

Q.14 [158]

160 = 80 × 12 + 60 × 12 +
22

12

M


 200 =
3

M
 M = 600 kg

m1.0
200

20

6008060

180160600
xc 






I = Ic + Mx2  Ic = 160 – 200 × (0.1)2 = 158 kg m2

Q.15 [55]

Isys =
2

mr2

+ 







 2

2

)r2(m
2

mr
× 6

=
2

55
mr2 = 55

Q.16 [1]

x

/2
x – /2

dI =  









2

2
xdm


= r0  


















2/

2/

2

0

x
1

x
1




 dx

=  






















0

2
232

2
0 dxx

4

xx
x

4
x

= 









48

3

4

333

0



=
8

3
0

= 1 kg m2

Q.17 [120]

Y =
4

3
x +

4

10
, Y = tan 37° x +

4

10

r


= 2m
L = mvr


= 10 × 6 × 2 = 120 kg m2 / sec

Q.18 [27]

mg =
R

mv2

N = 0

 v = gR

2

1
mv2 +

2

1
×

5

2
mR2 2 = mg (h – 2R)


10

7
v2 = g(h – 2R)

10

7
gR = g (h – 2R)

h =
10

R27
= 2.7 × 10
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Q.19 [5]
F + f = ma
FR – fR = Ia/R

acm



f

F

 F = ma
6

5


M5

F6
a 

Q.20 [155]

KE =
2

CM
2
CM I

2

1
mv

2

1


3kg

1.2kg v = 6 m/sec

=
2

1
(7.8) (5)2 +

2

1
(4.6)R2

2

R

5









=
2

1
× 25 × 12.9 = 155 J

KVPY

PREVIOUS YEAR’S
Q.1 (C)

By using parallel axis theorem, 2111
I mr

2


Q.2 (A)

Net

R
F FR 2FR 3.5FR

2

 
      

Q.3 (C)
Apply conservation of linear momentum
mv = (m + M)v

0

mv sinR =
2 2

0

2
MR mR

5

 
   

  2
0

2M 5Mh R
mv R R

R 5

 
   

(m + M) (h – R)
0
R =

  2
0

2M 5M
R

5




h 10m 7M

R 5(m M)






Q.4 (A)

2
2 2

2

1 1 2 v
mgh mv mR

2 2 5 R
 

27
mgh mv

10


10gh
v

7


Q.5 (A)
2 + S System lie above edge of 1.

M L
y M y 0

2 2

 
   

 

y L
y

2 2
 

L
y

3


Now, 1 + 2 + S centre of mass will lie above the table

3M L L L
x M x 0

2 3 3 2

   
       

   

3x L L L
x 0

2 2 3 2
    

5x 4L

2 3
 

8L
x

15


2

x–L/2Table

L

x

S

1 y

Q.6 (C)



CM

2L

J

J = mv

....(i)
where v is the velocity of centre of mass.
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After impulse rod get angular velocity 
Angular impulse = 

J × L =
2m(2L)

12
 

...(ii)

mL
J

3




3J

mL
 

from equation (1); v =
J

m

Kinetic energy = KE =
1

2
mv2 + 21

I
2



2 2 2

2 2 2

1 J 1 m 4L 9J
m

2 2 12m m J


  


2 2J 36J

2m 24m



2 248J 2J

24m m


Q.7 (B)
If perfect rolling (solid cylinder P)
According to energy conservation law

mgh =

2
2 P
P

V1 1
mv I

2 2 R

 
  

 

Here,
I  moment of intertia, R  Radius

2mR
I

2


PV

R


mgh =
22

2 P
P 2

v1 1 mR
mv

2 2 2 R


mgh =
2 2
P P

1 1 1 3
mv 1 mv

2 2 2 2

 
    

mgh =
2
P

4
mv

3

....(i)
If sliding without friction
(solid cylinder Q)
According to energy conservation law

mgh =
2
Q

1
mv

2

 2
Qv 2gh

...(ii)
from equation (i) and (ii)

2
Q

2
P

v 2gh 3

4 2v gh
3

 
 
 
 

Q

P

v 3

v 2


Q.8 (C)
Initial sphere is slipping and finally it start rolling
During its motion  about point of contact is zero.
 Angular momentum of sphere about point of
contact remain conserved.

Slipping



Rolling


v = R

Iw = (I + MR2) ’

2 2 22 2
MR MR MR '

5 5

 
    

 

2
'

7


 

Q.9 (A)

/ 2

/ 2

P

Hinged point

When CM of system and Hinged point lie on one line
then only system can remain in equilibrium in given
position.

AB =  cos 

AP cos
2 2





AB
cos AB APcos

2 AP 2

 
  

2cos cos
2 2


 



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1 cos
2cos

2

 
 

4cos = 1 + cos 
3 cos = 1

cos =
1

3
 = cos–1 1

3

 
 
 

Q.10 (C)

P

P0

0,0 V0
V

P = P
0

– 0

0

P

V
× V

.....(1)
PV = RT
from (1) and (2)

RT

V
= P

0
– 0

0

P

V
× V

T =
0P V

R
–

2
0

0

P V

RV
=

2
0

0

P V
V

R V

 
 

 

T =
0

0

P V V
1

R V

 
 

 

Q.11 (C)
Pole star is a visible star preferably a prominent one
that is approximately aligned with the axis of rotation
of earth.

Q.12 (B)

r1

r1

R
R

m2

m1

CM

L L





Using concept of COM
m

1
r

1
= m

2
r

2

r
1

+ r
2

= 2R

2
2

1

m
1 r 2R

m

 
  

 

r
2

=
1

1 2

2m R

m m

L sin 
2

= r
2

[R < < L]


2

=
1

1 2

2m R

(m m )L

Q.13 (D)

I = 4.25 kg-m
N = 15rps

1

1

2 I = 1.8 kg-m
N = 25rps

2

2

2

Their axis of rotation is common.
Angular momentum conservation I

1


1
– 

2
I

2
= (I

1
+

I
2
)

2(4.25) N
1

– 2 (1.8) N
2

= (4.25 + 1.80) N (2)
(4.25 × 15 – 1.8 × 25) = (6.05) N
63.75 – 45 = 6.05 N
N = 3 rev/s.

Q.14 (A)

I
cm

+ m (R + y)2 = I
3

...(1)
I

cm
+ m (R – y)2 = I

1
...(2)

from (1) & (2)
I

1
– I

3
= m [(R – y)2 – (R + y) ]

I
1

– I
3

= m (2R) (– 2y) ...(3)
I

cm
' + m (R + x)2 = I

4
...(4)

I
cm

' + m (R – x)2 = I
2

...(5)
from (4) & (5)
(I

2
– I

4
) = m [(R – x)2 – (R + x)2]

I
2

– I
4

= m [(2R) (–2x)] ...(6)
(3)2 + (6)2

 (I
1

– I
3
)2 + (I

2
– I

4
)2 = (m2 × 4R2 × 4(x2 + y2)

distance of CM from O = 2 2x y

=
2 2

1 3 2 4

1
(I I ) (I I )

4mR
  

Q.15 (A)









F

 1

m g1

m g2


T2

T1

F
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
1

= 30º, 
2

= 60º
using Lami theorem on m

1

   
1

1

m gF

sin sin


    

1

1

m gF

sin sin


 
...(1)

using Lami theorem on m
2

   
2

2

m gF

sin sin


   

2

2

m gF

sin sin


 
....(2)

using (1) & (2)
m

1
sin 

1
= m

2
sin 

2

m
1
× sin30º = m

2
sin 60º

1

2

m
3 1.7

m
 

Q.16 (B)

2
2 21 1 V

mV mR mgh
2 2 R

 
  

 
{Usingconservationofenergy}

2 2V V
m mgh

2 2

 
   

 

2V
h

g


Q.17 (C)

44

m g1

BC
5

37º

90º

3

y

mg

A

CM

5

2
5

2

CM of triangular plate is on the median. If we put a
mass say m

1
on C it will produce torque about A which

balance the torque produce mg about A. Thus plate
will can be in equilibrium position
m

1
g × 4 cos 37 = mg × y

m
1
g × 4 ×

4

5
= mg × y

m
1

= m × y ×
5

16

1m

m
= y ×

5

16

y < 3  1m

m
< 1

m
1

< m
m

1
< 540 g

from given option Ans. (A)

Q.18 (A)

P Q
O

D

Mg

Mg

A


C
E

B
Horizontal

2



2



For one arm to remain horizontal the net torque about
O must be zero (in the position shown in the figure)
for this OP = OQ

 OQ =
2


cos

from figure
AE = AC + CE
 AE =  cos + OQ

=
2


=  cos +

2


cos

 cos =
1

3

hence  =cos–1(1/3)
correct Answer is (A)

Q.19 (D)

4a/3

I=I +M(a 2)cm

2

8
3

= Ma
2

 mvr = 1

  = 2

4a
mv

3
8

Ma
3

 
 
 

=
mv

2Ma
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Q.20 (C)

20 g

N1

mg

N
1

 
R

M 20 g mgR
2

 

M 20 2 m  ;
20

M 48.3kg
2 1

 


Q.21 (B)

Q.22 (C)

mgh =
1

2
mv2 +

1

2
I2

I =
2

5
mR2

v = R


10gh

v
7

 = 10 m/s

On elastic collision with block velocity will

interchange speed of block after collision is 10 m/s.

Q.23 (B)

By conservation of angular momentum

2 m/s

before after

Li = Lf

about feet on fixed ground

21.5 m(1.5)
m 2

2 3
   

 = 2 rad/s

Q.24 (B)

The frictional force on the tyres is an external force

and is being provided by the road.

Other options i.e. front tyre, rear tyre and brakes

comprise the internal parts of bicycle thus forces applied

by them will be internal only.

Q.25 (D)

Mass of bottle = m0

Length of bottle = L

base Area = A = pr2

density of shampoo = r

mass of shampoo = rfAL

y

L

fL

Center of mass of system

 0

0

L fL
m fAL

2 2
y

m fAL

 
   

 


for critical angular displacement, mg will pass through

tilted side.

y

mg

From the diagram tan  =
r

y

0

2
0

r(m ALf )
tan

L
(m ALf )

2


 



at f = 0 & f = 1, tipping angle ‘’ will be same. for very

small valuesof ‘ f ’ , wecan neglect f2 terms

0

0

r (m ALf )
tan

L
m

2


  
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1 0

0

(m ALf )r
tan

L m
2



 
 

   
 
 

So if f increases  will increase.

JEE-MAIN

PREVIOUS YEAR’S

Q.1 (1)

Mg (sin ) =
2
0

1
MV

2
+

1

2


2
0

2
MV

5

 Mg (sin ) = MV2   =

27v

10gsin

Q.2 (1)

I = 2 
2

5
ma2 + 2

2 22
ma mb

5

 
  

I =
4

5
ma2 +

4

5
ma2 + 2ma2=

8

5
ma2 + mb2

Q.3 (1)

mg – T = ma

TR = I 

a = R

mg –
I

R


= ma

a =

2

mg

I
m

R


V =

2

2mgh

I
m

R


= R

= 2

2mgh

I mR

Q.4 [0.8]

A

B

C

E

FD

/6

M/6

/6

/6/6

30°

c
o

s3
0
°

IAB =

2

2
M

M 36 6

12 6 6 2

  
        
  
 
 





Ihexagon = 6IAB = M =

2 2 3

12 36 36 4

 
  

 

 

=
6

100

24 24 24 24 3

12 36 36 4

  
   

=
1

100
[80] = 0.8 kgm2

Q.5 [8]

Ratio of time period

1

2

T

T =
1

8

1

2

2

2









=
1

8

1

2




= 8
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Q.6 (1)

I1 =2
2MR

2

I2 =
2MR

2

I3 =
2MR

2

I4 =
2

5
MR2

Q.7 (3)
Moment of inertia of point mass
= mass × (Perpendicular distance from axis)

m m

mm

Moment of Inertia

= m(0)2 + m(l 2 )2+m

2 2
1 1

m
2 2

   
   

   

= 3ml2

Q.8 [20]

2

F.R. 2F

I mR / 2 mR


   

22 200
10rad / s

20 (0.2)


  



2 2
0 2    

(50)2 = 02 + (10) 
2500

20
125 rad

No. of revolution =
125

2
20 revolution

Q.9 [82]

145°

70°

B

C

35°

55°

Component along AC
= 100 cos 35°N
= 100 × 0.819 N
= 81.9 N  82 N

Q.10 [20]

  
 

r F

      
 ˆ ˆ ˆ ˆˆ ˆr (2i) (2i 3 j 4k) 3 j 4k

&   


ˆ ˆ ˆF 4i 3 j 4k

  
 

r F =
 

ˆ ˆ ˆi j k

0 3 4

4 3 4

=      ˆ ˆ ˆi( 12 12) j(0 16) k(0 12)

=  ˆ ˆ16i 12k

    
 2 216 12 20

Q.11 [3]

 
   

 
2

gsin gsin 2
a gsin

I 1 3
1 1

mR 2
b = 3

Q.12 (4)

We know,  
  
L m (r v)

with respect to A, we always get direction of

L along

+ve z-axis and also constant magnitude as mvr. But with
respect to B, we get constant magnitude but
continuously changing direction.

Q.13 [728]

We know, 
  

 
 

1 2

2
t

Let number of revolutions be N

2N = 2
 
 

 

900 2460

60 2
× 26
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N = 728

Q.14 [4]
Mg sinR = (mk

2
+ mR

2
) 

=


2 2

Rgsin

k R
a =




2

2

gsin

k
1

R

t =
2s

a
= 

 
 

  

2

2

2s k
1

gsin R

for least time, k should be least & we know k is least
for solid sphere.

Q.15 (3)

(3) a =
2

gsin

I
1

mR



 =
5

7
×

10

2
=

25

7

t =
02v 2 1 7

a 25

 
 = 0.56

Q.16 (3)
Using conservation of angular momentum
(Mr2)= (Mr2 + 2mr2)’






M

M 2m

Q.17 (3)



L

Mr2 


2

2

ML

Q.18 (3)

f

T

Let's take solid cylinder is in equilibrium
T + f = mg sin60 ....(i)
TR – fR = 0 ....(ii)
Solving we get

T = f
req

=
mgsin

2
But limiting friction < required friction

µmgcos60° <
mgsin 60

2
Hence cylinder will not remain in equilibrium
Hence f = kinetic
= µ

k
N

= µ
k
mgcos 60°

=
mg
5

Q.19 [200]

Q.20 [3]

Q.21 (2)

Q.22 [2]

Q.23 (1)

Q.24 (2)

Q.25 [4]

Q.26 (4)

Q.27 (3)

Q.28 [9]

Q.29 (3)

Q.30 (4)

Q.31 [52]

Q.32 (2)

Q.33 (3)

M = 1.5 kg, r = 0.5 m, d =
5

2
m

I =
2 22

2 Mr Md
5

 
 

 
= 19.05 kgm2

Q.34 (4)
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Q.35 [6]



by energy conservation mg =
2 2

21 1 m
I

2 2 3


 



6g




Speed v = r =  = 6g

v 6 10 .6 6m / s   

JEE-ADVANCED
PREVIOUS YEAR’S

Q.1 [0004]

2–f2 =2a=0.6  f2=1.4

=I  (f2–f1)R=MR2
R

a

1.4 – f1 = Ma = 0.6

stick

f2

f1

2N

f1=0.8 = (2)=
10

P
×2

P = 4

Q.2 (B)

 =
dt

dL
= )I(

dt

d


=
dI

dt
 = )II(

dt

d
mrod 

as I
rod

= com   =  insec t

wd
I

dt

= )mr(
dt

d 2 = m
dr

2r
dt

 
 
 

= 2m rv

= 2m(vt)v   t

Q.3 (C)
L

0
remains cons. in magnitude and direction but L

P

changes its direction continously hence L
P

is variable

L0

v x

L (varies direction)P

Q.4 [3]

2R

2R
O

P

I
0

=
2

)R2()m4( 2

–
2

3
mR2= mR2 [8 –

2

3
]

=
2

13
mR2
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I
P

=
2

3
(4m) (2R)2 –












 ]R)R2[(m

2

mR 22
2

= 24 mR2 –
2mR

2

11

=
2mR

2

37

2

13
2

37

I

I

O

P 
= 3

13

37


Q.5 (C)

Q

R

P

y

x

O

45°

At 45° P & Q both land in unshaded region.
The general motion of a rigid body can be considered
to be a combination of (i) a motion of its centre of
mass about an axis, and (ii) its motion about an
instantaneous axis passing through the centre of mass.
These axes need not be stationary. Consider, for
example, a thin uniform disc welded (rigidly fixed)
horizontally at its rim to a massless stick, as shown in
the figure. When the disc-stick system is rotated about
the origin on a horizontal frictionless plane with
angular speed, the motion at any instant can be taken
as a combination of (i) a rotation of the centre of mass
of the disc about the z-axis, and (ii) a rotation of the
disc through an instantaneous vertical axis passing
through its centre of mass (as is seen from the changed
orientation of points P and Q). Both these motions
have the same angular speed in this case.

Now consider two similar systems as shown in the
figure: Case (a) the disc with its face vertical and
parallel to x-z plane; case (b) the disc with its face
making an angle of 45o with x-y plane and its horizontal
diameter parallel to x-axis. In both the cases, the disc
is welded at point P, and the systems are rotated with
constant angular speed about the z-axis.

Case (a) Case (b)

Q.6 (A)

Consider case (a)

Q

P

A (out of
paper)

(inside
paper)

B

at t = 0

AB

at t = T/4

at t = T/2 at t = 3T/4

Q

P

A(inside)(outside) B

A B

Hence axis is vertical.
For case (b)

Q.7 (D)

Angular Velocity of rigid body about any axes which

are parallel to each other is same . So angular velocity

is  .

Q.8 (A,B)

V
0

= 3R î



106

Rotational Motion

V
P

(3R –
2

R
cos 60º) î +

2

R
sin 60 ĵ

= î
4

R3
î

4

R11 




Q.9 (D)

IP > IQ

a = 2

gsin

1 I / MR





Hence ap < a0
tp > tQ
Vp < vQ
And as  = v/R
So P < Q

Q.10 [8]

Angular momentum conservation

I
1


1
= I

2


2

2
2 2 2

1 2

MR
MR 2(mr mr )

2
      

=
 

2
50 0.4

2
× 10

=
 

    
2

2 2
50 0.4

2 6.25 0.2 0.2
2

 
  
  


2

40 = [4 + 1] 
2
 

2
= 8 rad/s

Q.11 [4]

Applying conservation of angular momentum.

2mvr – 0
2

MR2



2MR

mvr4


4

1
1045

4

1
)9()105()4(

2

2


















= 4 rad/s

Q.12 [2]

I

 


dt
=

I

 

t

0

dtR30sinF3

=
 
2

5.05.1

)1()5.0()5.0()5.0(.3
2 = 2 rad/s

Q.13 [7]

Q.14 (D)

Q.15 [6]

Q.16 (D)

At equilibrium, reaction of the wall on the stick cannot
be equal in magnitude to the reaction of the floor on
the stick.

Q.17 (A, B, D)

  3 2ˆ ˆr t t i t j 


2ˆ ˆ3 2
dr

v t i t j
dt

   




 
1

10 ˆ ˆ5
3t

r i j


  


 
1

ˆ ˆ10 10
t

v i j

 


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 
1

ˆ ˆ
t

p i j

 



5 ˆ
3

L r p k
 

    
 

  

dv
F m

dt




 
1

ˆ ˆ2
t

F i j

 



20 ˆ
3

r F k
 

    
 

 

Hence, (a, b, d)

Q.18 (A,D)
As the discs are rolling without slipping

' 5 '
5

a a


      

Angular momentum of system about CM through an
axis along rod is

=
 

22 24 2 17

2 2 2

m ama ma
 

24a

24a

5a 5a

2a

a

'

Hence, (B) or (a, b)

Q.19 (A, or AB)

Q.20 (BCD)

90– x

y
(x , y)

(0,0)

x sin
2

  


y = cos

2 2

2 2

y 4x
1 

 
Path of A is ellipse
(B) torque about point of contact

mg sin I
2

  


hence torque  sin 

(C)  cm

L
y 1 cos

2
  

(D) midpoint will fall vertically downwards

Q.21 (Bonus)

Q.22 (A)

Q.23 (B,C)

v =
2kr

2

F = – kr (towards centre)
dv

F
dr

 
  

v

r
O

At r = R,

kR =
2mv

R
[Centripetal force]

v =
2kR

m
=

k
R

m

L = m
2k

R
m

Q.24 (A,C)

ˆ ˆF ( ti j)  


[At t = 0, v = 0, 
 = 0


]

 = 1,  = 1

ˆ ˆF ti j 


dv ˆ ˆm ti j
dt

 



On integrating

2t ˆ ˆmv (i tj)
2

 


[m = 1kg]

2dr t ˆ ˆi tj
dt 2

 



[r 0 at t 0] 


On integrating

At t = 1 sec,
1 1ˆ ˆ ˆ ˆ(r F) i j (i j)
6 2

 
       

 



1
k̂

3
  


2t ˆ ˆv i tj
2

 


At = t = 1
1 ˆ ˆi j
2

 
 

 
=  1 ˆ ˆi 2 j m / sec

2


At t = 1 1 0s r r 
  
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1 1ˆ ˆi j
6 2

 
   

= [0]


1 1ˆ ˆs i j
6 2

 


2 2
1 1

| s |
6 2

   
    

   




10

6
m

Q.25 [0.75 m]

=60º

h

c
C

2

gsin
a

I
1

MR






ring

gsin
a

2




disc

2gsin
a

3




2
1 1 2

h 1 gsin 4h 16h
t t

sin 2 2 3ggsin

 
   

  

2
2 2 2

h 1 2gsin 3h 4h
t t

sin 2 3 ggsin

 
    

  

16h 4h 2 3

3g g 10


  

4
h 2 2 3

3

 
   

 

 
 
2 3 3 3 3

h h 0.75m
2 44 2 3


    



Q.26 (A)

(P)   ˆ ˆr t ti tj  


 
 

dr t ˆ ˆv i j constant
dt

   




dv
a 0

dt
 




P mv
 

(remain constant)

21
k mv

2
 (remain constant)

U Uˆ ˆF i i 0
x y

  
     



U  constant

E = K + U

dL
r F 0

dt
    




L 


constant

(Q)    ˆ ˆr cos t i sin t j    


   
dr ˆ ˆv sin t i cos t j
dt

     




   2 2dv ˆ ˆa cos t i sin t j
dt

     




   2 ˆ ˆcos t i sin t j       

2a r 


r F 0   
 { r


and F


are parallel}

r
2

0

U F.dr m .r.dr      


2
2 r

U m
2

 
     

 

2U r

   2 2 2 2r cos t sin t    

r is a function of time (t)
U depends on r hence it will change with time
Total energy remain constant because force is cen-
tral.

(R)     ˆ ˆr t cos ti sin t j    


 
 

   
dr t ˆ ˆv t sin t i cos t j

dt
        




v  


(Speed remains constant)

 
 

   2 2dv t ˆ ˆa t cos t i sin t j
dt

        
 




   2 ˆ ˆcos t i sin t j      

   2t r  
 

F r 0   
 

r  


(remain constant)

Force is central in nature and distance from fixed point
is constant.
Potential energy remains constant
Kinetic energy is also constant (speed is constant)
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(S)
2ˆ ˆr ti t j

2


  


dr ˆ ˆv t i t j
dt

   




(speed of particle depends on ‘t’)

dv ˆa j
dt

  




{constant}

F ma
  = {constant}

 
t

0

ˆ ˆ ˆU F.dr m j. i tj dt        
 

2 2m t
U

2

 


 2 2 2 21 1
k mv m t

2 2
   

E =
21

k U m
2

   (remain constant)

Q.27 (A,C,D)
We can treat contact point as hinged.
Applying work energy theorem
Wg = K.E.

mg
4


=

1

2

2
2m

3

 
 

 



 =
3g

2

Radial acceleration of C.M. of rod =
2 3g

2 4

 
  

 



60º 30º

C.M. 



atar2

C.M.

Using  = I  about contact point

mg

2


sin60º =

2m

3




 =
3 3

4
g

Net vertical acceleration of C.M. of rod
a

v
= a

r
cos 60º + a

t
cos 30º

=
3g 1

cos30º
4 2 2

    
     

    



=
3g 3 3 3

4 4 2 2

  
      





=
3g 9 15

g
8 16 16
 

Applying F
net

= ma in vertical direction on rod as sys-
tem

`mg – N = ma
v

= m
15

g
16

 
 
 

 N =
mg

16

Q.28 (A)



mg N1

N
2


max

mg

max

r

For 
max

, the football is about to roll, then N
2
=0 and

all forces (Mg and N
1
) must pass through contact point

 cos (90º–
max

) max

r r
sin

R R
   

Q.29 (B)
For no slipping at the ground,
V

centre
=R (R is radius of roller)

 Velocity of scale = (V
center

+r) [r is radius of axle]
Given, V

center
 t= 50 cm

 Distance moved by scale = (V
center

+r)t

center center
center

V r 3V
V t t 75cm

R 2

 
     
 

Therefore relative displacement (with respect to
centre of roller) is (75 – 50) cm = 25 cm

Q.30 [25.60]

N1

Mg
10 cm

N2

f2

90 cm
f1

xL

50
<

40 cm

Initially

1 2N N Mg  1

4Mg
N

9


   N 1
aboutcentre

0 N 50  2

5Mg
N

9


5N
1
=4N

2
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K

K

K

1 K 1

1 1

2 2

f N

f 0.32N

f 0.32N

 





L

L

L

1 S 1

1 1

2 2

f N

f 0.4N

f 0.4N

 





Suppose x
L
=distance of left finger from centre when

right finger starts moving
(

n
=0)

about centre
 N

1
x

L
=N

2
(40)

1 2K L 1 2f f 0.32N 0.40N  

4N
1
=5N

2

 1
1 L

4N
N x 40

5


x
L
=32

Now X
R
=distance when right finger stops and left

finger starts moving
(

n
=0)about centre  N

1
x

L
=N

2
(x

R
)

1 2L K 1 2f f 0.4N 0.32N  

5N
1
=4N

2

 2
2 R

4N
32 N x

5


R

128
x 25.6cm

5
 

Q.31 (A, C, D)

vm

x

by the angular momentum conservation about the
suspension point.

2
2m

mvx mx
3

 
   
 



2 2
2

mvx 2vx

m 3x
mx

3

 



 

For maximum
d

0
dx


 

Mx
3

 


So the
V

3
2

 


Q.32 (BD)

Q.33 (ABC)

Q.34 [49]

Q.35 (ABD)

Q.36 [0.18]

Q.37 [0.16]


