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Circular Motion

| EXERCISES |

(3)

A%
V=To= o= T constant [Asv and r are constant]

(1)

In uniform circular motion (constant angular
velocity) kinetic energy remains constant but due to
change in velocity of particle its momentum varies.

(3)
27 Rad 2n  Rad
(’Omin = A (Dhr = - .
60 min 12 x 60 min
. On,  2m/60
"o, 2n/12x60
(4)

120rev/min=120x%rad/%c:4nrad/%c

(1)

_ v _ 100y
r 100
(2)
i ]k o
V=dxF=|3 -4 1=-18-13j+2k.
5 -6 6
(3)
(3)

2
Centripetal acceleration :VT = constant. Direction

keeps changing.

(1)

a, wixR T° R R
_—= =—X—=— o
a o’xr TZor r [AST =T,

(3)
(4)

Centripetal force is constant in magnitude that means
speed is constant and due to change in direction ve-
locity is variable.

(1)

Force is perpendicular to V

Q.13

Q.14

Q.15

Q.16

Q.17

Q.18

Q.19

Q.20

rgh _ {M -857m/s
[ 10

(1)
(4)

mv?

F=mg- .
.
(3)

T =tension, W = weight and F = centrifugal force.

(2)




Circular Motion

Q.21

Q.22

_ 0.5x(4)?
1

=8N

(1)

(4)

urg

JEE-MAIN
OBJECTIVE QUESTIONS

Q.1

Q.2

Q.3

Q.4

(3)

20

r=-——m, g = constant
T

n = 2" revolution

v =80m/s

80
20/x

0)0=0,(of=¥= = 4x rad/sec
0=2nx2=4xn
from 3 equation
©® = o + 200
=  (4n)?2=0*+2x o X (4n)
o = 2r rad/s?

20
g=oar=2nx — =40m/s
T

(4)

Speed = constant

In uniform circular motion, velocity and acceleration
are constant in magnitude but direction is changes.
Therefore velocity and acceleration both change.

(4)

2n 2n
O g = T T e rad/sec.

2
V= mr-6—g x 0.06 m/s = 2z mm/s

AV=V; -V, = \[2v=22n mm/s

Q.5

Q.6

Q.7

Q.8

Q.9

Q.10

(3)

Given, m, =0,

0 =0, next 2 sec,,
1

0= —at2=ia22=2a
2 2

t =2 sec.
6=0,

1 2 1 2
0,= ~a(2+2) —EOLZ =60
6, 2o
(3)

oo 02

' T1, 2 T,

o 0,=T,:T

T, =12 x 60 x 60 sec

T, =60 sec.

o, . ®,=60: (12 x 60 x 60)
o, o)=1 720

(1)

2n
0w=—

t

where t=1Day=24x60x 60 second

because earth complete one
revolution is 24 hours about its own axis

W:(L] rad/s

60x 60x 24

(4)

Given

a = 10m/sec? = a.=5rad/ sec?

a=oar

r:E :2m

(1)
210 rad
leenoa =0,0=2nTN=2x X ————
60 sec
from t=5
m:w0+at

210 rad
2nx——=0+ax5 o=14n——
60 = Tc%cz

(3)

% __ . . .
a = — ,radiusisconstant in case (a) and increasein
r

c

case (b). So that magnitude of acceleration is constant
in case (a) and decrease in case (b).



Q.11

Q.12

Q.13

Q.14

Q.15

Q.16

Q.17

Q.18

Q.19

_4n? R_4><3.142 x 6400x10°

:(DZR_— =
% T (24 60x 60)°

Q.20
B 4Ar? R 4x3.14% x 6400x 10°

—? = =3.4cm/sec?

®°R 5
(24>< 60x 60)

(3)

Givenr=25cm,n=2
o=2nx2rad/s=a =
= (4n)? x 0.25 = 1612 x 0.25 = 4n?

(1)

Slope should be decreasing

_ o

=" =tand, if 04, al

Q.21
(3
Given
0w=0+20

o _ 9.0 99 _2942-4
do.,

m Q.22

odo
o =—=
do
(2)
We know that
v<,urg
v<4/0.64x20x9.8

v<11.2m/s

(4)
r=144mm=16kg, T __ =16N

mv?

(6% +26).(20+2) = 12 rad/sec?

T=
Q.23
\"

.
~ /1 _ [16x144 — oms
M T 6

(4)
T =moxr
=T =2T =mor

o, = 2 0= 2 x5= /50 ~7rev/min

(1)
Uniformly rotating turn table means angular velocity
is constant. New radiusis half of the original value.
I’ = 2r and » = constant
V' = or =2er =2v=20cm/s
a = @’r = 2w’r = 2a= 20 cm/s?

Q.24

Q.25

(3)

Circular Motion

For just dlip = umg = mo?r
here o is double then radius is 1/4®"
r=4cm

(2)
We know the Tension provides necessary centripetal
force
So T = mw¥
. 19
Givenm=0.1, ® =2n X;

(=1 =>T=mo¥

2
T=01x (2nxgj x1
T

=0.1x 4n2x£x1:4ON
b

(3)
Att=0,
a =gcoso,

v? u?
R= ; = gcoso
(2)

Let the car looses the contact at angle 6 with vertical

2 2
= N=mgcos0—
R

During descending on overbridge 0 is incerese. So
cos 0 is decrease therefore normal reaction is
decrease.

mgcosO —N =

(4)

For circular motion in vertical plane normal reaction
is minimum at highest point and it is zero, minimum
speed of motorbike is -

2

mg = ml;/ =Vv=,0gR

(1)
mv? . .
T-mg= p (centripetal force at lowest point)
_mv’ +m
= p g
(2)

For normal reaction at points A and B.



Circular Motion

Q.26

Q.27

Q.28

Q.29

Q.30

mv2 Q.31
mg—-N =
r
mv?
N =mg-—
r Q.32

= N, >N, and normal reaction at C isN_ = mg, so
NC > NA > NB

(3)
Car will not dlip when moving with speed v

(1)
<_w—> Mmo’R
f
mv?

umg =
0.5 mg > mx(5)?xR
0.5x10 Q33
>R
25
R< 02m
(3)
T N

mg mo’R Q.34
Given
R=10m
m = 500 kg Q.35
N =mo?R+mg

2
= mv = M-F 500x10
=25kN
(3)
v=,/Rgtan0
R=10.3 m, 6 =30°
= 1/10\/§x10Xi = 10 m/sec = 36 kmvhr

V3

(2)
Here required centripetal forceis provided by friction
force. Due to lack of sufficient centripetal force car
thrown out of the road in taking a turn. Q.36

4
In uniform circular motion
Force is towards centre

(2)
Given
,,,,,,,, .. ~2M
':" d B\\‘
; A
oo2t P
B = 27
T=2M ofd= BEMd
= ()
P2
(1)
The maximum bearable Tension
2
T mv
[
T..=10N,
m=1, v=?1=1
[TI ,100 1
v=,[—= algys 10 m/s
m 1
(3

At highest point velocity is zero.
After word it fall freely.

(1)

T M T coso
T sind e
mg
r=¢sno
T sind = mw?/¢
T cos6=mg

(3)



Q.37

Giventhat
v=72km/h., r=80m
We know that
2
tane:v_:20><2021
rg 80x10 2

9=tanl(1j
2

(3
We know that

v?=rgtan® (0 issame) = v?=rg
Casel

r,=20mv, =v

r,=r,v,=11v

_§: r,g (1.1v)2 T
vi g v? r
121= . 24.2
21= 55 = r=242m
JEE-ADVANCED
OBJECTIVE QUESTIONS
Q1 (O
0, ct? 0, ot
0,=k t° 0, =kt
From given conditon calculate k, and k,,
2n =k xm =K, X 4n
k, =2 k,=1/4
0, =2t 0, =t4
_0 L g0y 1
A dt B t 4
(=)= (%),
dt t=5sec dt t=5sec 4
0, 0,=80:1
Qz (D)

Q)QP=2n—5n=—3n rad/s
g = 31 — 51 = — 21 rad/s

Time wh tidereachesat P =, = o> = =
Imew enQpancereac% =1 = 3 —6
SecC.
B2 _5
2= 3x T 6 X
On/2 3
&= 3r zisec

Q.3

Q.4

Circular Motion

1
TimewhereR particlereachesat P. t, = = > Sec.

2n

3
Common time to reaches at P is E SEC.
(D)

6m/s

10m
P\ 30°

8m/s

w.rttoP

3m/sec

48
> * »33
4m/sl

V| o =8sin30°+6sin30° =7 m/s

v
o= =l=0.7rad/sec
R 10

(D)

PQ = \/(a— acosot)? + (asinot)?

= ZaQn(ﬂt]
2

(? asinot
- :'K“ P
Qw

(i) (A), (ii) (A)

(i) Atany moment g = a




Circular Motion

Q.6

Q.7

Q.8

Q.9

. . S .
After integration log v = _E+C ..(i)
at=0,s=0,v=y,

C=logyv,
log vVl._3
from eg. (1) Vo R
v=y, ek
2
(i) Atany moment 3 = 8 a=+/2a, = \/EVE
(A)

It can be observed that component of acceleration
perpendicular to velocity is

a=4ms
2 2 QlO
%
radius= _— = Q=1m.
aC
(B)
F. = mk? rt?
2
ab=k2rt2=vT
= v =krt
v
&% g —¢
F, = mkr
=P=F .y (v R.v =0
P=F .V =mkrxkrt
= mk2ra
(B)
1 2
K== m?zas == 20
2 m
v: _ 2as’
% R mR
_ v _ 2as
&~ "ds T m
2 12
— _2352 +[2;as)2 —_ 2as 1 S_Z
a m m) " m R? QU

12
Total force = ma= 2as [1+ ?J

(B)
Given y = a/s

_vdv s _a
' ds YN
3
o
a
v2 a’s
a=—=—
R R
a
tanoc=—r=§
a R

r

—=Rcos0

2

r=2R cos 6

After differentiable

dr . do dr .
~— = _2Rsinfg— — =V, =VvSno
ot dt = dt rad

do

prals (- ve because 0 decreasing)

vsnO=2Rsn0w
v=2Rw =0.4m/s

a=.a?+a? .. o= constant

V2
= a=a, =—

=3=0

2
:»a:vF =2 e

r

©)

Vv2/R
30°,

a



Circular Motion

a =13t Q.15 (C)

_ For water does not fall at topmost point of path that
.[ av = J 3t means at topmost point N should be greater than or
Nee equal to zero.
V= mv2
2 for N=0,mg= -
tan30° = —\/ét'R = 1 4t4 . mv?
(\EIZJ V3 /3t and forN>0,mg < ——
2
. mv?
= t=4t= B=(27 so that mg is not greater than
= t=2sc Q.16 (A)
012 (D) When train A moves form east to west
Given 2
___________ g, = M
. T &5 _ m(v + oR)?
. R . mvIR = N, =mg- R
e =16k _
R=144m m=K N, =F,
When train B moves from west to east
MVZ )
R_ mg_NZ:@ NZ:mg_
T .=16N
RT 16x144 m(v - oR)?
Vimax = = Vimax = 16 =12m/s R
N2: 2
Q.13 (A) F,>F,
V=re Q.17 (A)
If r— r/2
v=Y 220 oeee Mg =mo’R, = %
2 2
Turn table rotating uniformly a = 0
9 ya Q.18 (D)
azﬁ' a,:v‘z =§=10cm/sz v = 72 km = 20m/s, r = 20m, g = 10 m/s?
"R’ " RI/2 2 To avoid skiding 6 must be greater than
2
v 20x 20
Q.14 (A) 0 = tan! [_J =tan—1( J
3L/4 rg 20x10
_
L/4 0 =tan? (4)
R Q.19 (O
. R JR=1.2m
m .2
292 T AT
1.8m
M L 9.1m
T-T,=—F% 0?5
1 2 2 2
T1>T2



Circular Motion

2x1.8 36 v

i = = .[— 0="77,
Thetime taken to fall on ground 98 98 3/
velocity at time of string breaks Te = mo? 3¢
T, — T = mw?2/
_ distance —o1 98 T, =5mo?
~ time V7736 T,—T,=mo¥
T, =6mo/
2 91x9.1x98 T:T.:T,::3:5:6
Centripetal acceleration = % = ~1ox38 ¢ B
= 187.856 = 188 /s’ Q.22 (B)
F=kx, T, =ka=mo?2a
Q.20 (D) k
For M to be stationary = 0= “m
T=Mg e (D)
Also for mass m, 2n 2m
T cos 6 = mg e (2) Timeperiod = - = = 2m = = =T
T, = 2ka= mw?3a
2
TSne:ﬂSine (3) == 2_k
3m
dividing (3) by (2) 3m
Timeperiod = 2n,|— =T’
v2 2k
tan 6= g/sing \/5
(S

Q.23 (B)
In uniform circular motion resultant horizontal force
on the car must be towards the centre of circular path.

11l
T<—e

Q.24 (A)
2n/sin®

Time period i 9% dne
v cos0

From (1) and (2) cos 6 = %

m Asweknow :
then time period = 21, [—
gM 2

ac = VH (centripetal acceleration)

Q21 (D)

o = const., for all three particles
Ta T, T, -
A B C

V2
Fromfigure: gsin6 = Y




2

\% \% . . \4
=g.—2= — (sincesin6,= —2)

Y R \"
=RaV3

Q.25 (A)
Maximum retardation a= pg
For apply brakes sharply minimum distance require

to stop.

0=v2-2ugs
V2

= Ss=7
2ug

For taking turn minimum radius is

V2

“ng'

2
=r=—,hereristwiceof s
ung

so apply brakes sharply is safe for driver.

Q.26 (B)
kx = mw?r
kx
< 2
mao-r
| X
r=1I1+x

Q.27 (O
The acceleration vector shall change the component
of velocity u, along the acceleration vector.

2

QJ|<

r=
n

Radius of curvaturer . meansvisminimumand a, is

maximum. This is at point P when component of

velocity parallel to acceleration vector becomes zero,

that is u =0.

U, =0

u, = 8cos30°

u, = 8sin30°

a=2m/s’ =4m/s

a=2m/s’ | u = 4m/s

Q.28

Q.29

Q.30

Circular Motion

(©)
do

2Ts;in7 = RdOA®’R

If dO issmall

@
n2,

2Td—2e = RdOAw’R

T =A0°R?

(D)

m
(T+HdT)-T= 7 w2x dx

dT = %.mzxdx

Integrate with limit x to ¢

T= J.%mzxdx
x

mo?[ x2 | 2
T= [V |:_:| - lmco [(2_)(2]
L2 2
(B)
Tcoso
Tsin® m?/sin®
mg

l
T for simple pendulum = 275\/3



Circular Motion

For conical pendulum
Tsnd=mw?lsnd
= T=mw?|

and T cos6 =mg

m
= T=—g
cosoO
g 2
Now, —— =o°l
coso
_ g
| cos
:E=2n £ coso
w
T

; _conical Pendulum Pendulum _ ’—COS@ ><\/7
TsmpIePendqum
Ratio = ,/cosO

Q.31 (B)
Tangential acceleration = a = gsind

Normal acceleration = a, = g cos0
g=9,
gsinb =gcosh = 0 =45°

=V, =V,

u, —gt=u,

20 - (10t = 10

t=1 sec.

During downward motion
g=9,

vy ==V

20 10t——10:>t—3560

JEE-ADVANCED

MCQ/COMPREHENSION/COLUMN MATCHING
Q.1 (B,D)

(B) There are other forces on the particle
(D) The resultant of the other forces varies in
magnitude as well asin direction.

Q.2 (A,C,D)
In curved path, may be circular or parabolic.
In circular path speed and magnitude of acceleration
are constant.
In parabolic path acceleration is constant.

10

Q.3

Q.4

Q.5

Q.6

(A.D)

(A) During a period of 1 year displacement is equal
to zero, so that average velocity is equal to zero.

(B) During a period of one year distance travel is not
equal to zero. So that average speed is not equal
to zero.

(C) During aperiod of first 6 month of theyear change
in velocity not equal to zero. So that average
acceleration is not equal to zero.

(D) In uniform circular motion instantaneous

acceleration is act towards centre of circular path.

(B,C,.D,E)

v=/gr = AtA

—2mg [v= \/7]

E
akE o
P D

mV "‘ ./@
N + 7I’ mg G }:( T XC
=N=0= AtGandC k. A
N =mg A
(B.C)

T -mgcosO= my
Tangential Acceleration =g sin 6

(A,B,C,D)

T cos 60°
A

T sin 60°
mg
T3 . mv?
— T Bl D
T, )
5 =mg ()]

HenceT=2mg , So (B) holds
From (1) & (2) V2=3g//2

3x9.8x1.6
V= ,/—2



Q.7

Q.8

Q.9

Q.10

Q.11

Q.12

V=28 ,/3 m/s.So(C) hold

(3g4/2)
a=Vir= (V312) = J3xg=98,3 m¢

(D) holds
onr  2m\l~3/2

v~ J(3g¢/2)
t = 4xn/7

. (A) holds.
Q.13

v Y
friction forceoncar = m,|| — | +a°
r

2
_— mv
which is greater than ——

;

(VA% +a

p'min -
g

Q.14

a
therefore it is not less than —, for safe turn.

g
(B.C)
There is no friction between road and tyres of car so
that car cannot remain in static equilibrium on curved
section. Whenever speed of car is greater than or less
than v car will dip.

(B.D)

When speed of car is 36 km/hr, car can make a turn
without skidding. If speed is less than 36 km/hr than
tendency of slipping isdownward so it will slip down.
If speed is greater than 36 km/hr than tendency of
slipping upward so it will dip up. If thecar’sturn at
correct speed 36 km/hr

N cos 6 =mg

2
. mv

Nsing=——
r

N = (mg)2+[m—\/2]

r

Q.15

(B)
(A)

(A)

(10 to 12)

The angular velocity and linear velocity are mutually
perpendicul ar

Circular Motion

V-0 =3x+24=00rx=-8

5
o 10 2
The acceleration of particle undergoing uniform
circular motion is

d=mxV = (-8i+6])x(3i+4]) = -50k

\Y 1
Theradius of circler = — — meter

V-0 =3x+24=00rx=-8
(D)
2

mu
mg = _ro =u,= Jor

Now, along vertical

1., [2r
= — t = -
r 29 =t g

Along horizontal; OP = 2u t = 22 ¢

(B)
As at B it leaves the hemisphere,

2

mvZ=mgh
By energy conservation between A and B

2
mgr + —m(—j =mgh + — mv?

2 3 2
) B 19r
Put u, and mv .h= E

(©
2
As a-= VT =g cosd

[4

. a,=g
Alternate Solution :
when block leave only the force left is mg.

a,=9.

11



Circular Motion

Q.16 (B)

d
angular acceleration = Ew: k

Hence angular acceleration is uniform
= @©Op

From graph (d)

= o =kt?

do
angular acceleration = r = 2kt

& Hence angular acceleration isnon uniformand directly
0 proportional to t.
N .. (D) gr
B g (D) ¢
Jr . N Q20 (A)q (B)qs (O) qs (D)ps
Tension would be minimum when it (tension) isalong v =2
Oef Tangential acceleration g = 4t
2 4
Centripetal acceleration a_ = v _ a
¢ R R
Q.17 _v._4
Angular speed ® R=R"
at
ﬁ 4R R
9 —_ a‘t _ —_———
tang= L = 4 3
2 a, a, & t
NUMERICAL VALUE BASED
Q.1 10 m/s
2 2 a0
R, = U< cos” 37
Q.18 g
2 2
s gaz UX (4/5)
10
15
=5 mg Q.2 [0625]
v =#R
Q19 (A)as(®B)p (Op (D)ar oR
From graph (a) = o = k6 V' = AR-5)= —
where K is positive constant 5
] do
angular acceleration = md—e =ko x k =k?0
", angular acceleration is non uniform and directly
proportional to 0.
~(A)g,s _
From graph (b) = w2 =k0 . SR-25=R
Differentiating both sides with respect to 6. 25

R=—m =
7 6.25 m

0 80 do_k

“ o - o o~ 2

Hence angular acceleration is uniform. Q3 [0050]

. (B)p 2h v2
From graph (c) R=5m, h=2m, Ax=10m, v, =Ax,a = —
= o=kt 9 R

12



Q.4

Q.5

Q.6

Q.7

(2]

FBD of block in ground frame

o

mg

o)
&

N

-—
r = htan®

Ncosd = mg

Nsin® = mw? [centripetal force]
= tand = w&/g

lgtan®
=> o= g?n :\/%(tanG):ZX1:2rad/s

[24]

V,y =4or

[128 sec]

14x10° 14
T 15x10" T 15

2r
®= 2443600

x 1073

0
t=—
)
14 24 x 3600

21

t:15x10— X

14 x 8 x 3.6
t= —— ~ 128 sec.

(2

Given @ =cv"
dt

mv?

— =cV"
r

On comparing n =2

Circular Motion

[0010]
Thelift goesdown with retardation means acceleration
isupward, letit bea

h h
T=2m | =2
T Qest T g+a
2

2=2 S =1
= T \10+a 2710
[0009]
Imdt Areaunder graph
<®> = .
J‘ dt time
1
=x12[25+50]
=2 @ - 9r/s.
50
Q)
N
12
37° 53 t
16 41 50 7
-— to—)
[20 /A
At highest point a.=g
u? cos? 45°
Ri =g [R,=Radiusof curvature]
C
u y/i\ u cos 45°
\ﬁ//
45° a8
u2
E =g (1)
C

Now when be moves along the same path with constant
speed u, then at top point, since radius of curvature
(R, remains same

U2
R - & ..(2)

13



Circular Motion

from (1) and (2)

Q.11

Q.12

Q.13

14

1.
> =

g

aC

=a.=29
a, =20 m/s?

(3]

Tsin® = mw2¢ sin®

T =ml®?
Tcos® +N=mg
N = mg — ml®?cosd

1
N=1><10—1><O.1x§ x 100=5

[50 m/sZ
Angular velocity al aircraft will be same

1 2
a,= W?R, = (—j (1800) = 50 m/s?

6
[(5m]
5:% xgt2
)
vt
t =1 sec.

Q.14

Q.15

Q.16

2n
v=—"x25=5m/s
T
S=vt=5m

[0005]
T=mg
M @2 =T + Mg
mr,, ©?=T—pmg
M(F o + M) @2 = 2Mg
29

- rmax+rmin_ 2:5m

k(Ax)27R
V= mo! 1100
T Co{ifj | T Co{@j

kKAx=T = k (2nr-/)

o(%)-om
2Tsin 2 —(dm)ﬁ

_ (Mot v2

Tde—(znrjr-(Zde)- s
2

k(21tr—€)=M

Tr

,_ knr(2nr—7)
ve=s ——————

Mgl
[0200]
mv?
Nb —mg = ?
N
T N m
@ v
mg



Circular Motion

2 acting on theblock are thegravitational
N,=mg+ —— force mg, thenormal reactionN, the static
R friction f, and thecenrifugal
2
N; +mg= mv forcewith f = uN, P=ma?r. Thus the conditions for
R equilibrium are
2 1 my2 mgsin 0 =Pcos0 + pN,
NTzi_mgzg mg+? N=mgcosO +Psin0
2mv? 4 g
z = —mg
3 R 3 0 N
V= 420R = 4/20x2000 =200 m/s AN
Q.17  [0002] "
0 X
Hencemg sin© = Pcos 0 +p mg cos O + p Psin 6,
sin0 -, coso
. _ o
gving P= cos@+ussin6 mg = m-r,
- sin®—p_cosH
600 ) or O)Z = # = g
cosO+p sind r
314
5 4 5|98
=|4,1.3) gg 7103
5 45
F—N, cos 60° = mg e (D) o = 3.2 radls
V3R
N, sin 60° = mw? o | -
Q.19 [0010]
) f cos® —N sin 6 = mw?r
_m(DR:mg ) fsin® + N cos® =mg
2 for limiting condtion f = uN
N,cos60°=F+2mg ... 3
J3R
N, sin 60° = 2m®? )
mw’R=F+2mg ... (B)
®’r uncosd-sn® 02
1 59 = g cosO+usin® - 64
— mo’R=3mg.. O=,— = T=10s
2 R
Q.18 [0003]
As shown in Q.20 [120]
figure, the forces In first time interval

TcosO=mg

15



Circular Motion

= R=—3 ~=12=120m
Zg

KVPY

PREVIOUS YEAR'S

Q1 (O

16

Att=4velocity v =at = 3g

In 11" time interval, string vertical means 6 = 0

= a=0
= T=mg

T
0

centripital (v2/R)
acceleration
mg

Inll™timeinterva

mv?

v =3g Tsinez?

TcosO=mg

solving

F = mo*r cos 45°
where r = Rcos 45°

B mo?R

V2

* R

V|2

8a. =~
aCZR

V2 V'R

@R =R

V2 =16V?

V'=4V

(ZTE)R'
v’

. Time period =

A\ 4



‘A—B‘ = Direction of resultant velocity

AD = Direction of tangential velocity

viano =3 T
rdo r
tana =1
o = 45°
Q4 (A
600
X
60° = — i—«@—tane
tan R 1/3
1 2
1+—=—
3 3
R%+x%-L2
Cos0 =
2Rx
= R? +x? — L2 = 2Rxcosd
dx dx
— =2R| x(-sin0) +cos6—
=22 [( ) dt}
—[x Rcose]——Rxsmeﬁ
dt
e v aa® o,
dt dt
B Rxsin0w
= V= Y _Rcoso
77£ o
B 2" s 2
2 11 13 3
FE B
Q5
252
hmaxzu ST e+Rcos€)
29

Circular Motion

h
forh = — "% =0

do
gR?
Solvmgweget—g 2
JEE MAIN
PREVIOUS YEAR'S
Q1 (2

Q.2

Q.3

Q.4

Particle is in uniform circular motion.

0.1s
i i = x360°=1.2s
Time Period T 30°

Now,
F = —kx = —-mo?x

F 2 (271)2 4n?
—=—0X=— — | X=—7F-X
m T

TZ
- 4X987><( _0.36) =+9.87 N
(12)° kg
(2)
c
F=—3 =mo?r
r
, 1
[0k r4
1
w o r_z
Tar?
4)
N = mw’R
4n®
N = m{?} R . (1)

Givenm=0.2kg, T=40S,R=0.2m
Put valuesin equation (1)
N=9.859x%x10*N

(4)

Satement | :
= \/},LRg =(0.2)x2x9.8
v =197 m/s

max

7 km/h = 1.944 m/s

Speed islower than Voo hence it can take safe
turn.

Satement |1 :

y - |Rg tan®+
max 1-ptand

17



Circular Motion

1+0‘ﬂ =542m/s

= 2% 98|:

18.5 km/h =5.14 m/s
Speedislower thanv__, henceit can take safe
turn.

Q5 (2

Q.8

mv?

pusN =

2

3

\
N_

=R -MItR

mv?
L - MSR -

F mg

(2
(3
—>V, — >V, —»V,
[ | —[ov] [ ]

3MV, = 2MV, + MV,

0 2 1
120=2V, + 60 = V,=30mis
%va +%2MV22 —%3MV02

KE. Lowve
2

_ VY +2V;7 -3V 3600+1800-4800
- V¢ - 4800

®©Il+

(2)

JEE-ADVACNED
PREVIOUS YEAR'S

Q.1

18

(D)

TSN =mLsind o?
324=05x%x0.5x »?

Q.2

Q.3

Q4

_ 324
~ 0.5x0.5

0)2

[ 324
®=105x05

—2—36 ad/
o= g =36rad/sec.

(A)

v cosd v COSO
v.=[2vsino)|
=[2v sin wt)|
> t

T T

2
(B)
a=w’r

Hence, (B)

(D)

Frot =—Mo?ri +2mv

o @(— ]) + me?ri

= 2mvrota)(_])
oR 2
— 2m_ ea)t _ e—a)t _
2 Jor(-])

2
F et =—Frot+mk= mo'R

(" —e)j+ mgk
Hence, (D)



Work, Power and Energy

| EXERCISES |

ELEMENTARYS
Q1 (¥

W = (force) (displacement) = (force) (zero) = 0
Q2 (1)

4Newton 4Metre
Joule = (Newton) (Metre) = X =
4 4
Joule
16

Hence : 1 Joule = 16 joule (Joule is new unit of

energy)
Q3 (4

Stopping distance Soc u? . If the speed isdoubled then

the stopping distance will be four times.
Q4 (2

Work done = Force x displacement

= Weight of the book x Height of the book shelf
Q5 (4

W =E&=(5i +6]—4Kk).(61 +5k) = 30— 20 = 10units
Q6 (4

2
s= v sds= £dt
4 2
2 2 2
F=ma= mdf:% v =3N
dt di°| 4
N o] w
2 2t 3| t? 2 3 2 2

w-Joras[fata-5| ] -2 -(07]-»

Q7 (2
Xy Xy 2T
WI F.dx :J' Cxdx = C{X—} = lef
0 0 2 0 2

Q8 (3

When the block moves vertically downward with

acceleration % then tension in the cord
T

[ I

Q.9

Q.10

3
T:M(g—%j:ZMg

Work done by the cord = F$=Fs cos 0

=Td cos(180°) = —(;ngxd = —3Mg%

(2)

F
20t E
T 15
F(InN) 104 B C
51 i
A, . D F .
5 100 15 20 25 30
S(in m)—»

Work done, W = area under F-S graph fromS=0m
tox=20m

= Area of trapezium ABCD + Area of trapezium
CEFD

:%x (lO+15)><10+ %x(10+ 20)><5
=125+ 75 =200 J.

(2)

| |
%

Here, mass of the block, m = 3kg

Initial speed of the block, u =0 (asit startsfrom rest)
Final speed of the block, v =4 m/s

Height, h (in this case the radius of quarter circle) =
2m

AK =t - tmez=tmvz—o
2 2 2

= %(3kg) (4m/s)® =24

The work done by the gravitational forceis

W, =mgh = (3 kg) (10 m/s’) (2m) =60 J

If W, isthe work done by the friction, then according
to work energy theorem,

19



Work, Power and Energy

Q.11

Q.12

Q.13

Q.14

Q.15

Q.16

20

W, + W, =AK

or W,=AK-W_ =24J-60J=-36J

As work done against friction is equal and opposite
to work done by the friction,

.. The amount of work done against friction is 36 J.

(4)

According to work-energy theorem, the work done
by the net force on the body is equal to the changein
its kinetic energy.

i.e, W=K -K.

(3)
According to work-energy theorem
W = Changein kinetic energy

FScosf = Emv2 —lmu2
2 2

Substituting the given values, we get
20x4xcosB=40-0

(u=0)

or coso=D_1 or ezcos‘l(lj:mo
80 2 2

(2

(Applied force - frictional force) x distance = Gain
in kinetic energy.
(20-f)x2=100r20—-f=50rf=15N.

(3)
Work
Power = —;
Time
mgh mgh
P=—— or t=—"—
t TP
Substituting the given values, we get
B 200x10x 40 3
10x10°
(1)
Fsno
F
0 \i > F coso

Power = (component of force in the direction of ve-
locity)
=F cos 6v

(4)
In compression or extension of aspring work isdone
against restoring force.

Q.17

Q.18

Q.19

Q.20

In moving abody against gravity work isdone against
gravitational force of attraction.

It means in all three cases potential energy of the
system increases.

But when the bubble rises in the direction of upthrust
force then system works so the potential energy of
the system decreases.

(2)
According to the conservation of energy, kinetic en-
ergy at A + potential energy at B

= O+mgh:%mv2+0

or v2=2gh=2x9.8x0.20 (- h=radius=20cm
= 0.2m)

According to work - energy theorem,
Work done on the ball = change in kinetic energy

= 1ran—(O)2 = l>< 2
2 2 1000

=392x102J=3.92mJ

x2x9.8x0.2

(2
In the stable equilibrium, a body has minimum po-
tential energy.

(1)
Here V(x) = (x2 - 3x)J

av
For a conservative field, force, F = ~dx

d .
F= —(X"=3X)=—(2x-3)=-2x+3
-~ F dx( )=-(2x-3)
At equilibrium position, F= 0

o =2X+3x=0o0r x:g m=15m

(4)
" , . S
Condition for vertical looping h= Er =5cm

L r=2cm



JEE-MAIN Q.11
OBJECTIVE QUESTIONS
Q1 (2 , .
Work done by centripetal force is always zero,
because force and instantaneous displacement are
always perpendicular.
W = F3 = Fs cos0 = Fscos (90°) =0
Q2 (3
25 =5 x 10 x cosd so 6 = 60° Q.12
Q3 (2
Work done does not depend on time.
Q4 (2
W = (2000 sin 15° x 10 = 5176.8 J
Q.5 3 Q.13
W =20 x 10 x 20 x 0.25 = 1000 J
Q6 (1)
W=E. (,-T) =100J
Q7 (3
1 1 1
S = > gl?,s,= > g28,8s,= > g3?
_1 _1
82—81—593,83—82—595 Q.14
W, =(mg) S, W,=(mg) (S,-S) W, =(mg) (S,—-
S2
W, 'W,:W,=1:3:5 Q.15
Q8 (1)
1
T=mg+ma, S= 3 at?
W, =TxS Q.16
_ m(g+a)at®
- 2
Q9 (4
Displacement of surface point (where force acts) =
0 henceW =0
Q.10 (2
Q.17
5 3
(]
4

w =mgh, cos 6 = 4/5
=10x 9.8 x 3=294 joule

Work, Power and Energy

(2)
W, +W, =AK =0,

I
W_—mg (E_E cosGO"j =0

mg ¢ 1 5
W= % = (0.5) (10) (Zj =23
(3)
F 1 F
F=Kx ,x = K—l,le P K x? = 2K,
2
similarly W, = 2K, sinceK, >K,, W, <W,

(4)

W. = work done by spring on first mass

1 .
W, = work done by spring on second mass
W, =W, =W (say)
W, +W,= U -U,
2W =0 1 Kx?
)
. Kx?
- 4
(4)
K d
W, = S S =K Ins+C Ans: (D)

2m 2m
2
{3X9—3X2 } [0-12] =-45
2
(3
m.v[vd—vdx _m_v2
A = areaunder the curve = Vax 2
100x11 _ mv? o m
2 - 2 - gymax

S Yo =11 m

21



Work, Power and Energy ]

Qls (2 Q.26 (4)
2KE,,=KE,,

1 1 1 1
- = 2_ = 2 == 2_ = 2
ZXEMXVZ ZE_MVZ W, > mv, > mV.?,mgh > mv, > mv?,
2 mro2ip M So V, isfreefrom direction of V.
Vo= Q27 (1)
mn = (i) .
1 1M Vv o
=a =>a= 7
- EM(Vman +1)2:E.EV§OY 0 0 t()
Vv
V2 * :_0 = = -
= (V. +1)2= ;oy :>vman:(«/§+1)m/sec Y t, At =>w=Ak=k -k
Q.19 (1) 1. V2
- =Mt
P? 2t
KE=— =1
2m Q28 (2
Q.20 (2 1
, —Fx=0- = m(2)?
F 1( ]tzw FS FEHJ ’
a= —,S: — | — , = = —
m 2 F 2m 1 )
and —FS=0-2 Em(Z)
Q.21 (4 s
1 So M =2,S=2x
Areaunder curve = — (4) (20) =40
2 (4) (20) Q.29 (4
W = work done by resistive force F =-40J 1 1
-40=K -K ,K =50J, 50K =50-40=10J F80= 5 mvV?, FS= 5 m (2V)?
s
Q22 () S0 o =4.5=4(80)
1
W =area=80 = 2 (0.1) -0,
so u=40m/s Q.30 (A)
V X
Q23 (1) dv VAL |k
L o V&——KX, 2 2 .
u
h=—-gt3 W=mgh=mg —,W=K -K
2 g g g 2 f i VZ— 2= — Kx2
212 1 1 212 1 2_1 2=l 2
ﬁ:}(__muz’ K== mu+ mg” t 2mu 2mV 2mKX
2 F 2 2 2
) Loss a x2
Hence Ans.is(A)
Q.31 (1)
Q.24 (4) W, +W, =0-0
Vv . Vi 10x1+W, =0
V =0+al,a= — ,velocity=O+a= — 10—umgx =0
T T 10=(.2) (10)x, x=5m
1 vt)
K.E=—= (m) [—j Q.32 (2
2 T Maximum velocity will be at Mean Position
Q.25 (1) Where F , =0 = mg = Kx
& 1x10=2x 100 x x = x=5cm
1 ~h=20-5=15cm
= — 2 — = = .
E 2mV’dV mV =p
Q.33 (1)

22



[ Work, Power and Energy

1 Q.45 (1)

w= 3 K(x,2=x) 1
U+0=U+ > mv?

1
= 5 10(6°~4) = 100N cm 1
_ U -U=_-mv?
=1joule : 2
1
Q.34 (1) U=2 mv?2
(1) (mg)L—mg/2=mv?/2,v=[g; 2U
m=—
2(0.5) v
d= V«[Zh/ = \/a T =1m Q46 (3)
. 1
Q3% (B — muw>=mgh,u?=2gh ...(i)
—sa 2
3 .
mg| 4 + K.E. =mgh
O O
=FV = mgh
P=FV=(R+maV KE = g
4
.36 4
N ) K.E. ~mgh/4 1
100x9.8x 50 — =T = —
Average power = —— = =980 Js PE. ~ 3mgh/4 = 3
Q37 (4 Q47 (2)
V=0+at, F-umg=ma, F=pmg+ma, W+ W=0, W.-AU=0, W =AU=E
P = (umg + ma) at 1 , 1 ,
E= 5 K, X2, Fx, = 5 K, X,
Q.38 (3)
P= FV =50-30+ 120 = 140 J R N L S i
I (R
Q.39 (2
P=TV =4500 x 2 =9000 W = 9KW oF?
similarly K, = = , K, = 2K
Q.40 (2) B A i
P, = 80 ghV15, P, = 80 gh/20 - .
i_2_4 E Z[E—]
P, 15~ 3 :
E,=2E
Q.41 (3 Alter :
Given m = 12000 kg, v =4 m/sec & t = 40 sec F=K,x, =KX,
%mvz %x12000x42 E, = % K, X,2
Py= 2 = o= 2400W = 2.4 kW X
B = 2 Kg Xg?
Q.42 (2 2
Q43 (3) E. (K, %,

Follows from definition

|rn
>
I
N
7\
N—
N
I
N

N =

Q.44 (3 E,
Potential energy depends upon positions of particles

23



Work, Power and Energy

Q.48

Q.49

Q.50

Q.51

Q.52

Q.53

Q.54

Q.55

24

(4)

1 20 2000
2K(023)?=10 = K=" =22
oK =10=K=550""9
1 2000
work done = E'T[(OAS)Z -(03)’] =125

(1)

Uu=x>-3x, x=0,x=2

(ui)x:0 = 0’ (uf)X:2 =4-6=-2

Ak=—Au=2joule

(3)

1 1
100 = > K(2cm)? , E = > K(4cm)?

SO —— =4, E=400J

.. E-100=300J
(1)

2 2 2
K
V= 1K, X
m
(4)
1
43=2k@? )
1
- = 2
X 3= 2 k(10

..(2)
from equation (1) & (2)
X =100J

(3)

1
umg=Kx,U= 3 Kx2=
(3)

For m, N cos 6 = mg
For M, N sin 6 = kx

Kx

s;otan9=m—g

1 2
o L k= (mgtano)
2 2K

(1)

1
T=Kx,U=EKx2=—K

1 1 1
5 K, X+ - K x*= - mv?

2K

[

T
K

(umg)?

T

T2
T 2K

Q.56

Q.57

Q.58

Q.59

Q.60

Q.61

Q.62

Q.63

Q.64

Q.65

(1)

3mg. 1 @)2
mg (h + K )—ZK(K

(4)
(W'D)byfriction + (WD) by spring = Ak = kf - ki:O_ki

1 1 )
—025x1x10%x4— Ex 2.75 x42:—§><1><v

v=8m/s
(3)
du _ 2a b _, _2a
ar =0, _F+r_2 =0,r= b
(2)
du
—| =-ve, —| =+ve
dX X=A X x=B
So, F, = positive , F5 = negative
(3)

du
F=———=0aBandC

dx

(1)

Only in (A), U is minimum for some value of r

(1)
W, = W, + W,=5+2=7

C C

P>RP->Q Q-R
(1)

—— =cos(X+Yy),

U
E =cos (X +Y)

F=—cos(x+y)j —cos(x+y)]

T A T A
=—cos(0+ Z)i —cos (0 + Z)j
= |fl=1

1. 2. B
From work energy theorem
W_+W__=AK, W_=-AU, W __—AU = AK

(1)

Areaunder force vs displacement giveswork and area
above x-axis taken as positive while area below x-
axistaken as negative.



Q.66

Q.67

Q.68

Q.69

W, =10 x 1 +20x 1- 20 x1+10x1= 20 erg.

(1)

2x2-3x-2=0
3+49+16 3+5 1
X = = = X=-—,2
4 4 2
dF _ d’u d’u

= — =4x-3 = —=3-4x
dx dx? e

d’u 1
= (yj 1 =3+ 4X§

2

= (5) > 0 (stable)
(1)

¢ 1

== 2
(1) mg 2=3% mv
v=Jgl

(3)

Initially be in contact with the inner wall and later
with the outer wall.

(2
For light rod
Vip = 0

Using energy conservation
1
5 mv?+0=0+mg/

v=/29¢

JEE-ADVANCED
OBJECTIVE QUESTIONS

Q.1

Q.2

Q.3

(©)

f = frictional force =mg sin 6

displacement of point of application int second = vt
()

W, =[(mg sin 0) sin (180-0)] (vt) = —mgvt sin*6

(€)
W oo T W =AK =0
W = — W, But W, is independent of the path

joining initial and final position. W is independent
of time taken.

(©)

Q.4

Q.5

Q.6

Q.7

Q.8

Work, Power and Energy

W.D. = IF.JS
- KI[(yf +xJ).(dxi + dyj)]
=K I (ydx + xdy)

(35)
—K j(lﬁ) d(xy) = 20K

(B)

F=T,W_+W_=20

W, =20 =20+W_=20=W_=0
which is not possible.

(A)
W, + W, = AK

1
—umgd —mgh=0- 2 mv,2?
1 2
pgd+gh= > (v,’)

.
(0.6) (10) d +10(11) = 18d = ¢ = 1.1666 ~ 1.17

(&)
W, —W, =0, mgh = umg/
h=pu/¢
15
h=(0.2 =—=75
02t =71 02

(=75m=(3+3+15m

(A)

W+ W, =AK
—-AU+W, =-K,
= U, —pmgx =-K,

EK 2 4 —l 2
> KX +umgx= 2 mu

100 x? + 2(0.1) (50) (10) x =50 % 4
X2+x-2=0
Xx=1m

(A)

Js=pU2 (D)
25



Work, Power and Energy

Q.9

Q.10

Q.11

Q.12

Q.13

26

W = workdone by all the forces = AK

-1 et 1 (B
—2mV—2m[3 mp

(A)

3

1 10 250
5(100)(E] (1oooj( )[looj H =20 cm.

(©)

[

TSF

4
ZmI M 1m{ M

M 1

Apply work energy theorem
W+ W =AK =K, -K (K =0)
Casel: F(2)—-mgx2=K.E.
Casell: 2F(1)-mgx 1=K.E.

2 2
Caselll : 3F 3)—mgx |3 =K.E.

Incaselll K.E. is maximum.

(©)
W_+W_ =0,-Rd+mg(h+d)=0

h
R=mg(1+ E)

(B)
W = ROx F cos 0° (by the force)

=10 x = x 200
=10x3

Work done by g = MgR (1 — cos 60°)
gRM
2

ogRM
K.E.=RFO — S

Imv2 210x Fx 200
2 3

V2=2><%><200—50
V = 17.32 m/s

(©)
v=at

= 10/3m/s

10x10x10

IZ/Bm

Q.14

Q.15

Q.16

In ground frame
W.D. by gravity + W.D. by normal = Ak

1
0+WD,, = 5 x1x (10y3)? =150J

(B)

N.L.
Ik
mg $ ................ M.P.
k = 9 Given)
1 (mg) m
Zxmxv®+ k[—gJ _mg(—g]
k k
2
—XMmxV +—><mg mg 2 m 9
a m?g?® mg
Lmv? +1mga— mga
2 2
vZ=ga
1 -, mga
=—mv°=——
K.E 5 >
(®)
v (de
P=FV=m at ) Vv
t 2V
v
dt = —
PI m{z}
0 0
2
v ds _ (2P
Pt 2 , V ’ dt - m \/Y

t t

stz |2P jﬁ dt:s oc 132
m

0 0

(B)
On comparing
FocV
F=kV
P=FV =kV?
= Now2P=KV'2
2xkvy2=kV'?
= V'2=2Vv?

V' =42V



Q.17

Q.18

Q.19

Q.20

Q.21

Q.22

Q.23

Q.24

Q.25

Q.26

(B) Q.27
W _dKE  g-212)
dt ot
E.

- P:(dK—j = 4t = 8watt
dt att=2s

(B)
W, + W +W = AK

o

(A)

Total energy = E = K.E + PE.
When speed of the particle is zero.
i.e, K.E=0

=>UKX) =E

(A)

Angle of Inclination

(D)

Only Conservative force (mg) is act.
So E.C. isdone only two points
(1and 2)

(B)
K.E. + PE. = constant = C (say)

1
K—mg(tusine—E gt)=C

1
K=mg[tusin6— > gt?] + C [= parabolic]

C =0 soanswer is(B) Q.28

(©)

du -
G - Positive constant
X Q.29

For x < a, F = negative constant and for x >a, F=0
so, ans. (C)

(A)

K.E. + PE. = positive constant C
E+U=C,E+mgh=C,E=-mgh+C
and U =mgh,

So, answer (A)

(©)

_ P (1j __r
E—%, WE) | B = Jom = constant
Rectangular hyperbola (C)
(B) Q.30
At x = X, as X increases, F acts along negative x-

direction.
So, answer (C)

Work, Power and Energy

(B)

2

mgcosd—N = ml;/
B
m
c N
D
¢
A

v2 .
N =m(g cos ¢ — E) ..(i)
+N=0
2

= Co0S ¢ = I\;_g ..(i)

By energy conservation

% mv? = mg(R—Rcos$) = v2 = 2Rg(1—cosep)

2
Using (i) & (ii) cos ¢ = 3
height from highest Point = BD = R (1 — cos ¢)
2) R
= 1-— = —
n=r[1-2) -8
(®)

J5Rg =/5x 2.5x10 =5\/5>10m/s
- N, will be zeroin part A, D, C a some point

Ans.

(A)

Mv2z/R

2 1
Mv +Mgcosd = MgRcos6 = EMVZ

T=

1
= Mgh= MV’

T 2Mgh+Mgh

= R

(Straight line)
(©)

4Mg

Mg N
27



Work, Power and Energy

1.2
2MgR = EMV = 2,/gR=V

2
%:mgﬁN =N=3mg

JEE-ADVANCED
MCQ/COMPREHENSION/COLUMN MATCHING

Q.1

Q.2

Q.3

Q.4

Q.5

Q.6

Q.7

28

(A,C,D)
dW_= F.ds, if ¢ perpendicular to dg then
dw_=0, ds isdisplacement of point of application

ds
dt -’
(A), (C), (D) aretrue.

of force, y =

(A,B,C)
Follows from work energy theorem.

(A,B,C)
This can be explained by two blocks problem.

(A,B)

(A) The spring initially compressed and finally in its
N.L.

(B) Initialy stretched and then in its N.L.

(B, D)
dW_= F.ds =dk>0 = |F||dS| cosh >0
=0<0<90°

p=2mKE),KE. T sop™T.

(A,B,C)

W = AK, 0 = AK, k remains constant, speed remains
constant.

W = AK, 0= AK, k

(B,C,D)

....... NL =
KXy
MP.m 1
S {mg
_ mg
M.P. Xl—T

But block further move downward due to inertia. So
descending through distance

Q.8

Q.9

Q.10

at lower most point

2mg
k| —= |-mg=ma =
[k) g = a=g

(B,C)
W = AK > 0 = K ( = kinetic energy) increases

p= Jomk . p T ask®.

(B,C)
B and C holdswhen aball movesin upward direction.

(A,B,C)

Given U = 3x + 4y

Initially particle at rest at (6,4)
SoK.E=0

E =PE=3%x6+4x4=34]

total

_a_Uf_a_U] &n
F= oy oy = -3i —4j

a=-3—-4] = |ar5m/s?

(=3) (6,9
| ",

Let us assume particle crosses y axis after time t

1 2
— 6= ——x3xt
X—6 >
ayaxis=> x=0=>t=2sec

<o y_4: —%X4X(2)2 =-8

y=—-4m
(PE)aty=—4andx=0
ISU _,,-=—16J



Q.11

Q.12

Q.13

Q.14

Q.15

So.K.E.=T.E.-U

%MVZ =34-(-16) =50

V2=100= V =10m/s

(B)

(B)

When the particle isreleased at x =2 + A it will
reach the point of least possible potential energy (—
15 J) where it will have maximum kinetic energy.

1
Emvﬁ1ax =25= v__ =5ms

(D)

(B,D)
M C
A
H=2R
B
E.C between point A and B

1
Mg (2R) = EMV2

V = /49R < ,/50R
V = /40R > /20R

So, doesn't complete vertical circle and break off at
aheight (R<H < 2R)

(A,B,D)

2
N:MV

+ Mgcos6

N a6=0°
N is zero only
0 > nt/2 because in this

2
N=MV

—Mg cos 6

Q.16

Q.17
Q.18
Q.19

Q.20

Q.21

Q.22

Q.23

Q.24

Q.25

Work, Power and Energy

Mg

(©)

To complete vertical circle

speed at point B > ,/5gR
So. E.C.

MgH = %M(SgR)

H= 2 -25R
=7 =2

(A)
(D)
(A)

(C)

Friction is present

.. Mechanical energy is not conserved

But work energy principle conserved

Dueto extrenal friction forceisworking on the block.

(C)
The block will come to rest when work done by
friction becomes equal to the change in energy stored

in spring.

(B)

3
T77I7777

1
Net work done = P mvS

(B)
29



Work, Power and Energy

Q.26

Q.27

Q.28

Q.29

30

(€)
Velocity of block with respect to observer B is zero
so K.E of block =0

(B)
PET
Dueto +ve work doneby N

A)p.r (B)g s (C)qr (D)p

Thedisplacement of A shall belessthan displacement
L of block B.

Hence work done by friction on block A is positive
and its magnitude is less than pmgL.

And the work done by friction on block B is negative
and its magnitude is equal to pmgL.

Therefore workdone by friction on block A plus on
block B is negative its magnitude islessthan umgL.
Work done by Fispositive. Since F> umg, magnitude
of work done by F shall be morethan pmgL.

(A)g,s(B)p.s (C)r,s (D) p, s
(A) The FBD of block is

N

mg

Angle between velocity of block and normal
reaction on block is obtuse

.. work by normal reaction on block is negative.
Asthe block fall by vertical distance h,

from work energy Theorem
Work done by mg + work done by N = KE of block

1
. |work done by N| = mgh— Emv2

1
-+ —=mv2<mgh
> J

.. lwork done by N| < mgh

(B) Work done by normal reaction on wedge is
positive

Sincelossin PE of block = K.E. of wedge + K.E. of
block

Work done by normal reaction on wedge = KE of
wedge.

.. Work done by N < mgh.

(C) Net work done by normal reaction on block and
wedge is zero.

(D) Net work done by all forces on block is positive,
because its kinetic energy has increased.

Also KE of block < mgh

.. Net work done on block = final KE of block <
mgh.

NUMERICAL VALUE BASED

Q.1
Q.2
Q.3

Q4

Q.5

[21]

[54 sec]

(8]

Applying work energy theorem when block comes
downby x =10 cm

Wi T Wg t W =0

1
mgxsine—a kx2—umgx cos® =0

1
onsolving it givesp = 5 Ans.

[5 m/s]
Along normal their velocity are same.

_____ A
15m

v,cos0=vsino
at instant of touching ground.
25 1 v+/3

0= =2 5 0=60"> = =
cos—5—2:>—:2—2

2 3
- - — 2 25—V_1+—x
Wg—Ak:>mg><2.5—2mvl:> =5 5
2
?1:>v1:5m/s
[9600]

When the spring is compressed by 1.00 m, the sledge
moves further down vertically by

1.00 x sin 30° = 0.50 m.
Conservation of energy (gravitational potential energy
and elastic potentia energy) :



Q.6

Q.7

Q.8

Q.9

1
120 x 10 (350 + 050) = - kx1.00

k = 9600 Nmr*
[60]

1
0.8x30x10°x30= E (400)v? = 60 m/s

[1920]
. = MN = 0.4 x 20g = 80
N

A

HJ:F‘—» 2F
) 20g

F=40t

Sliding starts when

F=1

80t = 80 s t=1s

[2Fdt-[fdt=mv 0

N J%80t dt—sofdt =20V
1 1

o v=8m/s
P= F.V =40tx2v=40x3x 16 = 1920

Q.10

Q.11

Q.12

Q.13

[640 kJ]

1
WD, = - m,v,2=960kJ

WD

2

1
5= 5 mMV,2=1600kJ

2

WDy, — WD, = 640 kJ

[25]
U =mgh
22
vosin©o
=mg—2——— :lmvgsinze
2 2
h
30°
=100x= =253
[20]

Ja2 +p2 =025
5= a2+ p2-1=005m

1

1
2x —k&%2= —mv?

2 2

v2=2gh
kd? =mgh

400 x (0.05)2=5%x108x10xh =h=20m

[450]

(m-my) 4-1

= =——-g=6ms
a m1+m2 g 4+1g

2 1 2 1
Ak:Emlvl +§m2v2 _E

=m,gh, + mgh,
= (m, —m,)gh

h=0 E
=0+ 2a(2n—1)

@ N

x6x(2x3-1)=15m

x 10 x 15=450J

Work, Power and Energy

2 _
m,uy

1

2

2
m,u,

31



Work, Power and Energy

Q.14 [75sec]
mgh  300x10x 24
p= = =960
t t
300x10x 24 75
t= ————— =75s¢ecC.
960
Q.15 [f]
8U I aU ~
F=—I ——
OX oy
-ouU
= 6X%+8Xy=6x32+8x3x2
oX
—-oU
TA SHAZ-12y=+4x3P_12x2=+12
oy
A+B=6
Q.16 [10]
When the maximum speed is achieved, the propulsive
force is equal to the resistant force. Let F be this
propulsive force, then
F=aVv and FV =600 W
Eliminating F, we obtain
400
V2= ? =100 m?/s?
and the maximum speed on level ground with nowind
v==10m/s
KVPY
PREVIOUS YEAR’'S
Q1 (B)
mgh =300 x 10 x 6
p- mgh _ 300x10x6 —300W
t 60
P, =750 W
=2 100 = 40%
750
Q2 (D)

According to work-energy principle
W, +W_+W_ =AKE
8

I Fdx = 1mvf2 —imvi2
) 2 2

1 1 11 .
Ex3><8—§><1.5><4:§><5[v,2—(3.16) ]

v,=6.8m/s

32

Q3 (A
A B A
B
According to law of conservation of mechanical
energy
K, +U =K +U,
0+U,=0+U,
h=h,
Point D isat lineAB
Q4  (B)
For lower block +velift, kx > mg
= x>
k
y
WI/E theorm
1 1
- —kh?>-Zkx* |=0-0
mg(h+x)+(2 > j
mZgZ 1 ) 1m292
-mgh— ——+=kh*"-==—=-=0
=TT T Tk
2 2.2
ﬁ—mgh—?’mg =0
2 2k
he mg +4/m’g® + 3m’g®
- k
_mg+2mg 3mg -mg
Tk kT k
~h=3m9
k
W + mg = kh
W + mg=3mg
W =2mg
Q5 (O
W +W_=AKE, (AK.E.=0)
W =-W_
W, =-mgh

.. Energy dissipated = mgh



Q.6

Q.7

Q.8

Q.9

(©) Q.10
2
WE( D) o (d_UJ o
dx dx o dX* ) o
(A)
mgH —2u mg(d + x) —mgh=0
h=H -2u(d +x)

(B)
%mv2 +0=0+1

vi=4orv=2m/s

(A)

When box is dropped from a height h, then speed at
ground is v, therefore using mechanical energy
conservation

mghzémv2 e

when body slides on rough inclined plane, friction
forcewill alsoact f = uN = pumg cos 6 Applying work-
energy theorem

1 2
mgh—fs=5m(—j -0

h
mgh—-f.=——
g sin®

-2

2
mgh — umg cos0 x Lmv

Sne-2 9 (i) o

from equation (i) & (ii)

1
mgh [1 - pcotd] = | g mgh

putting 06 = 45°, cotd =1
1
l-u==
"9
N
"9

Work, Power and Energy

(B)
gy
2
\V(:I:z
Tln ®\ v=0
® (9—>V 9 g cos6
v mg

Centripetal force at point A :

2

T,-mg= 7 (D)
At point B :
T,=mgcos0 ...(2)
According to question
T,=4T, ...(3)
2
=mg+ V__4 mg cos [from equation (1) &

(2)]

2
= mg(4 cosb—1) = mv

(4)

According to conservation of energy between point A
andB

Also %mv2 +0=0+mg/(1-cosb)
mv? = 2mg/(1-cos 0)

mv?

=2mg(l-cosp) .. (5)

From equation (4) & (5)

mg (4 cos 6 — 1) = 2 mg (1 — cos 0)
= 4c0s0—-1=2-2co0s6

= 6c0s0 =3

= Cc0sO :l
2

= 6=060°

(©)

1
-—0_ = 2
AK.E.=0 2mv

1
AKE.= - 575 (2

AK.E. =-150J
Total work done by forces = —150 J
—F. Ax=-150J

33



Work, Power and Energy ]

d’u
= 150 f el =2 point of minima
= — 2 =
A (avg force) ax?) p
F—@ =F=600N d directi
=025 = (upward direction)
F,.—mg=F T
Fe I( I )
mg
F.=F+mg
F. = 600 + 750
F,=1350 N
(resistive force by ground)
Q.12 (B)
500 m P:,@ particle will found between (—1,0)
time
_ P Q.14 (A)
Pt
P:POUI
1 "
_10° hL
0.5 .
P =2x10° From work energy theorem
mh_ 5 10° mg(R—h)=Zmv?
time 2
9
/t= 2x10 :g><106 v=,/2g(R-h)
10x500 5
=4 x 10°
=400 m? JEE MAIN
PREVIOUS YEAR'S
Q.13 (O Q1 (3
at=0, x=05 )
x* x> 1.1 11 |1 T =M +
U=———=>—X—X—X—=>|—
4 2 416 4 2 |4
m
du_4¢ 2x_ s &Tmin=7(vz_4gf)_mg
dx 4 2
d 2
U 2 g_l’_i
—=X(x"-1
dx ( ) 5 = —
1 v
du , _ . (—59J
&=0 at point of maxima & minima 4
=U =+
XxX=0, x=%1 5LZ . +v_2
U 7 g=d
e =—1 point of maxima
" 4—\/2 =26
i g

34



Q.2

Q.3

Q.4

Q.5

,_13
VZEQZ

V2min = (59[ / 2)

(2
Given, m=0.5kg and u =20 m/s

1
Initial kinetic energy (ki) = 2 mu?

1
:§x0.5x20><20:100J

After deflection it moveswith 5% of k.

5
.kf—ﬁxki jﬁxlOO
=k =5J

Now, let thefinal speed be ‘v’ m/s, then :
] 2
k. =5= E mv

=v2=20
= v =20 =447 m/s

)
P=C
FV=C
dv
M—V=C
dt
V2

— ot

V oc tV2

e
dt
X oC t3/2

(10)
Using work energy theorem,
Wg=AK.E.

1
(10) (9) (4 = 5 (10)v2-0

v=10m/s
N
_C

U=+

o du_ ¢
dr r?

2
|F|:mV

Q.6

Q.7
Q8
Q.9
Q.10

Q.11

Q.12
Q.13
Q.14

Q.15

Work, Power and Energy

Ke)
3
<

=
[N}

<
8

N
=

(6)
Let'ssay the compressioninthespring by : .
So, by work energy theorem we have

1, 1
—mv° ==k
. y

Ly [m,
K
4
= -2 x10
=Y =\100"~

=y=2m
= final length of spring
=8-2=6m

(2)

[450]

(2)

(4)

(1)
Work done = Change in kinetic energy

1 2 1
ng + Wair-friction = Em(a\/g—h) —Em(O)Z

.64
= > mgh — mgh = -0.68mgh

air-friction

Option (1)
[400]

(1)

[40]

[16]
Work = AK.E.

W +W

friction Spring

—ﬂ(lmv2j+w o= —%mv2
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Work, Power and Energy

EE PN
2 2

‘. 40000 (20)*

) _16x10°
10x(1)

JEE-ADVANCED

PREVIOUS YEAR'S
Q1 (D)
suppose X = r cosd
y =rsind

K s s
force on particle is r—3(rC039I + rSInej)

forceisin radial direction so work done by this
force along given path (circle) is zero.

Q2 [9]
E=Pt=05Wx5s=25]

1
= 5 mv:i=v=5m/s

Q3  [9]
W+ W =K, -K,
185 + 1g (-4) = K,
90-40=K,
K, = 50J = 5x10J
Q4  [0.75]

F= (ayf + Zax])

W,y = (-5 1) -0

AB

36

Q.5

F=—1i + 2ax]
S=1i
Similarly,
W, =1
W, =025]
W, =051
WEF = WFA = 0 J
.. New work incycle=0.75J

[A,D]
By the energy conservation (ME) between bottom
point and point Y

%mvé =mgh +%mv12

Svi=vi-2gh L @)
Now at point Y the centripetal force provided by the
component of mg

2

~.mgsin30°= mvy
R
R
V]2_ 297
.. from (i)
%: V2 —2gh

At point x and z of circular path, the pointsare at same
height but less then h. So the velocity more than a
point y.

2

So required centripetal = mv

is more.



Center
ELEMENTARY
Q1 (4
self explainatory
Q2 (2
Centre of mass is nearer to heavier mass
Q3 (¥
r=127A
m,r, +m,fr,
T om+m,
Since centre of mass cannot go beyond bond length
0+35.5%x1.27 355x1.27 _ 124 A
" 355+10 365
Q4 (3
Q5 (2
Q6 (2
Q7 (2
Q8 (4)
Q9 (1)
Body at rest may possess potential energy.
Q.10 (4
a = mg+m,g
em T m,+m,
Q.11 (1)
vector sum of internal forces on system is zero.
Q.12 (2
Q.13 (1)
Q.14 (3)
P=+2mE
. Pac+/m (if E=const)
Ao m
P, \m,
Q.15 (2
Q.16 (3)

of Mass

VA
m
At rest :
) S
/7
m
Before explosion v »

e
After explosion

Initial momentum of 3m mass=0

...()
Dueto explosion thismass splitsinto three fragments
of equal masses.

Final momentum of system= mV +mvi +myj

...(ii)

By thelaw of conservation of linear momentum

mV+mvi+mvj=0 = V=-v(i+])

Q17 @
Q18 (1
Area of F-t curve = A = Impulse.
Impulse=dP =A=mv-0
Ly A
VEWY
Q1 (O
Q20 (1
If mass=m
first ball will stop
=v=0
so: K.E. =0 (min)
In other casesthere will be some kinetic energy
(K.E. can't be negative)
Q21 (3
According to law of conservation of linear momentum
both pieces should possess equal momentum after
explosion. As their masses are equal therefore they
will possess equal speed in opposite direction.
Q22 (3
A B

Va Vg \
@ — - -- - G- | O,4kg

Initial linear momentum of system= m, Vv, + m,V,
=0.2x03+04xv,

Finally both balls cometo rest

.. final linear momentum=0

By thelaw of conservation of linear momenum
02x0.3+04xv,=0

Vg =— 0'20X40'3 =-0.15m/s
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Centre of Mass

Q.23

Q.24

Q.25

Q.26

Q.27

Q.28

Q.29

@

~ (m, —em,)u, N m,(1+e)u,

Vi= m, +m, m, +m,

3 (m—e2m)u1+2m(1+e)><0 _
T m+2m m+2m
= 0=m-e2m

= e=1/2

@

u1=6m/s

m,—m
v,=| =—21u
! Eml+m2j !
Substitutingm, =0, v, =—u, +2u,
= Vv, =—6+2(4)=2m/s
i.e. thelighter particlewill movein original directionwith
the speed of 2 m/s.

u,=4m/s

2m,u
+ 272
m, +m,

@
Impulse = changein momentum
mv,—mv, =0.1x40-0.1x (-30)

4

By the conservation of momentum
40x10+(40)x(-7)=80xv = v=1.5m/s

@
Due to elastic collision of bodies having equal mass,
their velocities get interchanged.

&)
Initial momentum of thesystem= mv—-mv =0
As body sticks together
fina momentum=2mV
By conservation of momentum2mV =0
V=0

@
By momentum conservation before and after collision.
m\V+m,x0=(m+m)v
m
- V= L v
m, +m,

i.e. Velocity of systemislessthan V.

JEE-MAIN
OBJECTIVE QUESTION

Q.1

Q.2

38

4
Centre of mass is a point which can lie within or
outside the body.

@

Q3

Q4

Q5
Q6

Q7

Q8

Q.9

0x(2p)+2x50%x2 10

Yem = 2(p)6+2x5xp 11

, 103
111

S

centre of massis at aheight of h/4 from base.
©)
(©)

Centre of mass of two particle system lies on the line
joining thetwo particles

(€)

@

ycm:O

1 014+7 h=0

- X —XN=

8 8
7h 0.14 ]

. — =———— = h=-0.02below x-axis.
8 8

@

Let x be the displacement of man. Then displacement
of plankisL —x.
For centre of massto remain stationary



Centre of Mass

_ (nm—m)

nm-+m
_L _(-D
= X7 = (n+1 9
M a=a=a
Iﬁl M/3 | _ hma -ma, (n—l)Xa
L—x N &m = (nm+m) ~ (n+1)
Q10 (1)
Fa =0
soa, =0
o 2| ‘ E
100g 2509
@ ®
10cm/sec”
ma, +m,a, =0
100% 3, +250(~10)=0 _(n-1°
a, = 25 cm/sec? east acm—(n+1)29.
Qun @ 15 @
Centre of mass hits the ground at the position where Q. @
original projectilewould havelanded. Q16
Q17 (2
Q18 (O
V=0
mvg+m(vg+Vv,,)=0
_mv,
VBT TmiM

— sign means baloon moves downward

12 1 Q19 (3
Q @ Centre of mass will not move in horizontal direction.
1><2+£><6 L et x be the displacement of boat.
V. = 2 —Em/sec 80 (8—x) =200x
T14y2 3 640—80x =200x
Xx=2.3m
QL3 Now, Required
m,v, + m,V, distance from the shore.
Vem™ m, +m, =20—(8—X)
_ m(2i)+m(2j) ﬁ?
cVYem™ 2m | |
.. 20m
_ m(i + j)+m(0) | n -
m 2m ' i i
Vem ha_s same directionasof a_, X 8-x
.. straight line. =20—-(8-2.3)
=20-5.7
Q1 @ =14.3m
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Centre of Mass

Q.20

Q.21

Q.22

Q.23

Q.24

Q.25

Q.26

Q.27

40

©)

C, will move but C,, will be stationary with respect to

the ground.

@

Vel ocity become double.

@)
500 x 10=550x v

500 100
=——=—-m/s,
55 11

@

Vom=V cosO
-mO+mv,
2m

"V, =2V cos0

V cosb =

vCcosH vcosH

| 1 2

@
Speed is constant so K.E. — Constant
Gravitational potential energy change.

< Momentum= my
-+ Direction of y changes
.. Momentum changes

)

P2

— =K.E.

2m
P2

In— =InK.E.
2m

2InP-In(2m)=InK_.E.

So the graph between Inp & Ink is straight line with

intercept.

@
Herenet force=0
means momentum is conserved.

P, = P¢
0= _p1+_p2 = ﬁlz_pZ
p2 K1 m,

KE=—=. 7 =
2m K, m,

@

According to Newton's second law of motion.

Q.28

Q.29

Q.30

Q.31

&

F

o

t
If F, =0

then p = conserved

©)

P,=mv, +mv,

Pi=(m+M)v

mv, + Mv,
(m+M)

By energy consarvation

P=P=v=

1 2+1M 2_1 M + 2+1k2
2mvl 5 v2—2( m) v 2x

(v +MV)° o

2 2—
=mv,s+Mv,2=(M +m) M+m)?

) mM
solving X = (v, -Vv,) m .

@

m Y,
O—>

N\ & T

Initial momentum of body = mv
& fina momentum of body =—mv
Changein momentum = 2mv

©)

Fa =0

then p = conserved
P, +P,+P, =0

p, == (B+P,)

mv, = -m(V, +V,)

L0, = (3 20)+(--43)]

V, = -2 +2]

@

F, =0

then p = conserved

pi = pf

m,v=m,(0) +(m, —m,) v,
m,v

V1T (ml - mz)



Q.32

Q.33

Q.34

Q.35

Q.36

Q.37

(1)

Asf = 0frommomentum conservation

4v
(A—4)V1:4V3 Vlz(A_4)

(A2 (B)[3]
(2) It could be non-zero, but it must be constant.
(2) It could be non-zero and it might not be constant.

Q.38
@
Total travelled distance= 2d

A4

then
2d

Time between two collisions= v
0
Q.39

. Vg
So no. of collision/sec = d

Impulseinonecollision=mv,—(-mv,) =2mv,,

F=2 o Yo _ MY
~MNVo* 29 T d

@
Vv, = 4/2gh = {/2x10x10 = 10J2
1

1
k2: Zkljvzzz Zvlz

Vv
LV, = 71 =5/2 Q40
JAP| = Fmv, —(mv,)|=m |-, -V,

3 15%107
AP|=50x103x = x10v2 =
| | 50 x 0—x2>< \/E

J=AP=1.05N-s.

@

Impulse = changein momentum
—| =—m2u—mu

I =3mu

W.D. =changeinK_.E. P

Hu
2u N

1 1
W.D. = = m(2u)?— =~ mu?
2 2 Q.41

—Emu2:>WD _lu
T2 T2

©)

Impulse = changein momentum

IF.dt = AP

Given J.F.dt =J

Now, Contact timeistwicethantheearlier.

IIE.Zdt: J' —=7J=2J

@

mv; +mvj +2mv, =0

o (vitv) v .

3= 2 —_E(H'J)
1 1 v?

= — 24 = 24 = —.

K 2mv 2mv 22m2
3mv?

kf_ 2 '

€)
From momentum conservation
mu=2mv

u
=>Vv= o
2

from energy conservation

2
l><2 X(Ej =2mgh
> m 5 = mg

(at the time
AT of collision)

VA By

3m 2m
Impulse = changein momentum
So, —TAt=2mv —mu (for bullet)
| = TAt=3mv (for mass3m)

3mv=2mv—-mu
/5= | mu
v=u =—
= 5

@
If e=1thenangle=45°
If 0<e<1lthenangleislessthan

=Y
N

Centre of Mass

45° with the horizontal. So 30°isnot possible.

41



Centre of Mass

Q.42

Q.43

Q.44

Q.45

Q.46

42

(1)

Ininelastic collision, dueto collision some fraction of
mechanical energy isretained in form of deformation
potential energy.

.. thusK.E. of particleisnot conserved.

In absence of external forcesmomentumisconserved.

@
0.5><v +mx0=5.05v

Vi 005

v, T 5 =10~
1
Em(vf)z

=2 =(1022=10"
Em(vi)z

@

gh

2

by conservation of linear momentum

Pi = Pf
= mv=(100m)ju
= u=v/100

Pi = Pf

= mv=(100m)ju = u=v/100
(€)

re=1

Ascaollisioniselastic therefore v, = v,

Q.47

Q.48

Q.49

Q.50

Q.51

Q.52

1
SoAK =0=ky=ki= Zm (U +u3)
©)

In absence of external force. Momentum of the system
is conserved.

€
If e =1 and m;, = m, then after collision velocity
interchange

@
from energy conservation
mql = —mv = v=42d

from momentum conservation

m./2gl=mv' = v'=,/2gl

KE=%mx29I=mg|

@

21m/sec

@ C) C) C)

A Before

4m/sec lm/sec

21x1-4x2=1+2V,

21-8=1+2v,
2v,=12=v,=6m/sec
_V,-v, _6-1 5 1
u-u, 21+4 25 5
e=0.2
)
B 4 3 1
M,=p X Enr e—E

4 3
Mg=px §n(2r) =8M,

m, v+ 0= m,v, +mgVv,

&V=V,—V, (ii)
Adding (i) + (i) =9 +——3—V
ing (i) + (i) =9v,=v 5 5
vV V Vv \Y
SiTVm 57T T
Vi _vi3
Vo T v/6



Q.53

Q.54

Q.55

Q.56

V,=2,
Vel. of Sep=Vd of approach (.. eastic)
.. 20+5=V -5

=V =30n/sAns.

V=~V +2v) Lomp>>m,
Vv, =—(20+10) =—30 m/sec.

@

@

mu=mv,+mv, ... @)
usv,+v, @)

Vo -V _ .
T e (i)

as solving have

@
Let v, isthe velocity
of wall after collision.

V,-20

e= m(e= 1)

20 m/s
—

25 m/s
&7

=65m/s
@
0—> —>V
1% Collison [ m ]
A B
2nd Collision

Velocity of Bv = mv+4m(0-v) 3m
ocity o V=T T s
3v/5

After collision of A and B.

]
A B

Q.57

Q.58

Q.59

Centre of Mass

2

Let massof ball 2ismand massof bal 1is2m.

_myu, +myu, +mye(u, Uy )
=

m, +m,

@@

Soelastlccolllson.

2mv+em(0 V)
= e=1

©)
Just before collision, speed of ball v=.,/2gh and

just after collision V'_E 2gh ——\/ﬂ
@)
h
Ot v- 47w
= J2gh
vZ—u2=2aS

Let h'isthe maximum height after collision.

2
- (%“/Zghj =2x(-g)xh'

25 x 2gh=2gh
=
~ 25

@

From energy conservation

1 2 1

- - — 2
> m(y2gh)” +mgh= 5
v=2,/gh

o
"2y

L

43



Centre of Mass

Q.60

Q.61

Q.62

Q.63

Q.64

44

Lo tveyaen
. e N 29

©)

K 2x10x5 =10m/sec.

77777777

10 2xex10 2xe?2x10
et — +
10 10 10
1+2[e+€+..]

1+ =3sec.

l1-e

@
V=Av, +V, @

SV=V, =V,

©)

5,,.5
5x10=5(0)+§(v1):>vl:20m/%0

15
KE=Zx=(20)"-=x5(10

x> (20)°-x5(10)
=500—250=250J.

@
E, :%mul2 +%mu§

m(u, —u,)=2mu = U=L2u2
1 2m 1
Energy loss= EXT(Ul_Uz)z—Em(Uf +u3)

@

mu=nmu, + 1mu2

u=n(u+u,) +u,

u=nu+nu,+u, (D

u=nu, +u-u

2u=(n+1)u, %)
4u?

%nmul2 e 1) 4n

Lo @ (el

—

Q.65 (4)
Ap = 0.1 (6+4)
=0.1x10=1NS

Q66 (1)

2gh
By momentum conservation

m,/2gh +0=2mv'

_4/20h

2
By energy conservation
(2m)v2 2mgh’, m —— (2an) g h) =2mgh'
o h
T4
Q67 @
.1 before
v(msl) Oﬂcolllsmn. collisioni after coII|5|on
0.8
0.2
1 2 s

() - vis+vefor both.

(i) Yes (when maximum compression)

(i) - S have greater velocity after collision then R
have before collision and K.E. of Swill be less
theninitial K.E. of R

1 2 1 2
S MVI< S Mg (Ve)
butVg >V, Som,<mg
JEE-ADVANCED
OBJECTIVE QUESTIONS

Q1 (B
COM canlieanywherewithin theradiusr.

Qz ©
COM of circleisat O. LetM, ismassof circleand M, is
mass of triangle



Centre of Mass

Q6 (B

Since no external force acting on system hence V

‘ remain constant.
' COM of triangle Q.7 (D)
N An external force of 3mw?R isrequired which can act
< anywhere on system.
M, M, Q.8 ©
o—O
«— > . . . 4R
a/3 Centre of massof uniform semi-circular discisat g
Distance of COM from centre of circle
2R
\PN4 —ca? a Centre of massof uniform semi-circular ringisat —
=M. +M, =~ 2 2 %3 n
1*M2  sra‘ -oca 3 R
Centre of mass of solid hemi-sphereisat ——
a’xa a P 8
T 3a%(n-1) " 3(n-1) R
Centre of mass of hemi-sphere shell isat >
B) C T H R S D
h h R R R R
4 3 2 T 8 Fr
Q9 (©
} \ Sincethereis no ext. force on system
4x6n 8cm
3n m(R-x)+m(—x)=0
C x=R/2.

o ] 4R
COM of semiccircular disc= g

So from point C distance of COM is8.cm.

Center of mass coincides i
D)
m
COM of rod R
along y-axis p—

COM lie on this line

Alternate : Let the tube displaced by x towards left,
then ;

R
COM of rOd. MX=m(R—x) =>x= 7
along x-axis 2
X y Q.10 (C)

and equation of lineis E + E =1 Taking the origin at the centre of the plank.
D)
Acceleration of COM does not depend on position of
force.

45



Centre of Mass

40 kg 60 kg
I B
2 16
ﬂ. rﬁ
1
smooth
| 4D kg | /
60 cm |
oy
I
ﬂ.rﬁ
|
1
| ! | Q.12
“«
X
I
m,AX; + M, AX, + MAX, =0
( AXCM = 0)
(Assuming the centres of thetwo men are exactly Q.13
at the axis shown.) '
60(0) +40(60) + 40 (—x) =0, x isthedisplacement
of the block.
= Xx=60cm
i.e. A& Bmeetattheright end of the plank.
Qu ®
Since all the surfaces are smooth, no external forceis
acting onthe systemin horizontal direction. Therefore,
the centre of mass of the system in horizontal direction
remains stationary.
ys C.C,=5R (in both cases)
///’\;:§ Q.14
S LT X
| (L0 (L+5R,0)
Initial
y
FAANSY X 15
x0) /¢ (x-5R0) Q.

G

Final

x-coordinate of COM initially will be given begiven Q.16

by—
_MaXy +MeXy  (AM)(L) +M(L +5R)
X = —m1 Tm, - AV M =(L +R)...(1)

46

Let (x,0) be the coordinates of the centre of large
sphere in fina position. Then x-coordinate of COM
finally will be

_ (AM)(X) + M(x - 5R)
o AM +M
Equating (1) and (2), we have
x=L+2R
Therefore, coordinates of large sphere, whenthe smaller
sphere reaches the other extreme position, are
(L+2R,0)Ans

:(X—R) ......... (2)

(A)
Yem =0
m 3m
yCM:Zy1+TY2 y;=+15
y,=-5cm

®)

when ball reachesptA.

then block get shifted by x

.. but since than there is no ext
forcetherefore com remain at its position

Y
A
[(R=) —xX]m=Mx
_ m(R-r)
" M+m

©

Using momentum conservation

2 2

: 29(R-1)
on solvingwe get v = M(m—m)
(A)

F. Mg+R
a == g (Rem. R isvector)
com M M
C

)
m
V, ﬁ—»m
4—



Q.17

Q.18

Q.19

Q.20

P=0 0

P.=MV-mV, (1)
M
MV-mV,=0=u=— V.
m
using V2= u? + 2ax. Q.21
a=ug.
(wf_m
m - HgXx.
M2v2
X" 2miug
©
use myv,=myv,=P Q22
FE.= -mv 2+ —my,
2 2
L L R S L
_2ml m, +2m2 m,
_1 P(my+m,)
S 2 mym,
B)
If wetreat thetrain asaring of mass'M' then its COM
2R
will be at a distance — from the centre of the circle.
T
Velocity of centre of massis: Q.23
Vew = Rey -@
BBV oY
R A=Y
2V MV Q.24

= Vgu=—=>MVy=—
T
Asthelinear momentum of any system=MV ,

. . 2MV
Thelinear momentum of thetrain= Ans.

s

(A)

Using momentum conservation
Pr+P2+P3+Ps=0

pl = —f’z —f’s_m
|By| = /P53 + P35 + Pj

=Pl _Parpirpi

+E.+
2m 2m BotEot
Tota energy = 3E, + E, + E,+ E, = 6E,
(A)

m(y/2gh, +v/2gh;)

At

I=fxAtand F=

Centre of Mass

£ - 100x 1073(/2x9.8x 0.625 + /2% 9.8% 2.5)

0.01
F=105N

®)

0] FromM.C. mv =2mv'

v'=v/2
@i  fromM.C.mv=2mv'
v'=v/2
@iy  Impulse=mv=3mv'
=Y
Y73
®)
AP=2mv cos6
F,q Unit volume
=(2mv cos0) (nv)
=2mnv? cos 0

F
Pressure= —=— = 2mnv2 cos 0 cos 0
area

®)
In centre of mass frametotal momentum of the system
isalwayszero.

Hence momentum of other particleis— p.

®)
2F<—{2M M —>F

F
%om = 3y

w.r.to COM

4F/3<—2M}—somR—{ M |—>4F/3;

(_ Xz—’l X

AF  4F
LV

1 2
3 X1t T3 %= Ek(xl+x2)

& = (X1+X2)

47



Centre of Mass

Q.25

Q.26

Q.27

48

(©)

h

]

-
oS

Velocity of theball on striking = ,/2gh
After that ball goes to height less than (h) due to

inelastic collission = \/2g(h—d). Q.28
- 4J29(h—d) =e/2gh
h—d=¢€*h h__1
—d=eh= T se
(A)
vsin®
€= /2ghcoso
apply conservation of momentum
vsing
\fZghcose
/
Q.29
m,/2gh =mvcos® ... (i)

e ,/2gh cosd xm=mv cosh ......(ii)

tan6
— =cot0.
e

.. e=tan’0 on solving
(A)

Here e=1
if ball rebound elastically

Vio = Yol . .
.. Along line of impact momentum conservation

Jth =MV —(—mu) =mv +mu =2mu
AlogLOl U o = UcCOosD

= \/2gh cos6

J=2m coso.

2gh .

(A)

©

mzvcose = 3vy

vsing

O

vGosa™,

N

o
Q




Centre of Mass

Q30 (B) J5

IZN « VO 4t = MYo
3 2
Iﬂdt =mv'
3
3 m/sec 1"9 On d|V| dl ng
mV,cos30°=1.5m 3
V,cos30°=15 m—?/gxﬁ:%
v,=+/3ml/s
Vo
VvV = 2x/§
Q31 (D)
mgh=KE, +KEg Q34 (D)
1
—1. = 2 h
0.25x045x10=1+ 2 025)v timeto reach B fromtopby A
v=1m/s
Ball B isheavy so ball A velocity istowards|eft (= h
g
Q32 (© for body B
[aNsine dt=Mv, ... (i) A ( hJZ
—=v, o —=gl.=
INcose.dtzMu' 2 9 2 g
AO
(/N Tih/z
0
------- l hOO
3R/2 3R/2 gtl
' BU
: h
//////////////////X‘///// 2R _ n _
N N h=v \g v=1Jhg
J‘N ot mvy velocity of body B at h
at =27 .3 2
h
2_ 2 v, = +hg —9\/:
- 2R s
Now
2 ow
sno= ﬁ ; COSO = 3 momentum conservation
3 mg.t =3mv'
mv_03 E =mv' =>V'= Yo Ener gtégniat\elr'vation
2J5 3° G ¥
l3 (gt/3)?+3 h 13 2
= ~3m mg - = - 3myv
Q33 (© 2> 97572
I mpulse = changein momentum
P g /10gh
j ONsin@dt = 0, 3
N.cosodt =y .. Q35 (A)
I cos mv (1) In x direction : Applying conservation of momentum
from (i) and (ii) mu = 2mvcos30

49



Centre of Mass

Q.36

Q.37
Q.38

Q.39

Q.40

50

v in

Also e= ucos30°  ~f3u +/3°
_2
e= 3

©

) R/2
snb=——;0=30°

R
LOI Vi
\"
m
RIL[ R

Both have equal mass it means along LOI particle
transfer it velocity to disc which isvcoso.

SO VD =Vcos0=Vcos30°= %

©
(D)

Infinite

B)
2v cos0
g

Q.41

Q.42

since v,=0 soF = T =0.
dv
Fnetzma

dv
F+0=(m,—put) E
dv
F=(mg1t) ot

©
Neglecting gravity,

Mo
v =un m, )’

u = gjection velocity w.r.t. balloon.
my =initial mass m, = massat any timet.

]
-om my/2

] =2/(n2.

(@& (b))

(@  Sincethe speed remains samefor both sand and

car at same instant

o Momentum is conserved in both A and C point

b B
Car maintains the same speed.

JEE-ADVANCED
MCQ/COMPREHENSION/COLUMN MATCHING

Q.1
Q.2

Q3

(A,B,CD)

(A, B)

(B,D)

Center of mass of ring is at centre and centre of mass
of chord AB is at its mid point so centre of mass of

this combination lie at the line which makes 45° with
X axis.

Ring COM line

A X

Possible combination

(EE-EEJ
3'3'4°4



Q.4
Q5
Q6
Q7

QS8
Q9

Q.10
Q.U

Q.12

P=mv (i)
P=(m+m)Vv'

at maximum compression
P=FK

By energy compression

v'=v/2

E 2+0—£ 2 2+£kx2

2
kx2= m;/ :>x:1/2—nlxv.

1
at maximum compressionk = 3 (Mm+m)v2 = k =mv?2

=mvZ/4.
(AD)
B9
(AD)

(A,B,CD)

(A.Q)

\Y
mv=nvVm=vVv = —
n
. : . L
timefor first collisenist, = v (2nd block)

. 20
2ndcollisionst, = — =2t

\V 1
(3rd block)
SO t=t +2t+3t +at ... (-1t
t=t [1+2+43] s (n=1)]
_ (n=)(n-1+1) n(n-J)
- 2 2

Q.13

Q.14

Q.15

Q.16

= Lot
SO —2Xn(n— ).

(A,B,CD)
VCOSp = ucoso
vsing = eusingd

v2= /cos? 0+ e*sin? 0

V= Uy(1-sin?0) + € sin’ 0

u Loy

L v=ul-(1-€e?)sin?0
tan¢ = etand.

I=m(v o —Uo)

=m (eusin® —usinB)

=mu(1+e€)sind.

1 1
k= Emu2 k= 3 mv?2
k. 1/2mv?
K =1/ 2mi = cos?0 + €2 sin%0.
(ACD)

f
a= E for elastic collissione=1

v,2=0+2ad
2F 2Fd
Vor” = H'd Vor =\ T

after collisinv,,=0.
(B.D)

B0

U, =vv,=—(v+2u)
vdt|=m (v, —u,)
vdt=m(+v +2u+v)
vdt=2m(u+v).

e=1

_ 2m(u+v)
_—dt )
U =vv,=2u+v
1

Centre of Mass

1 1
Ak=Zmv2- - mu?= E[m(2u+v)2—v2]

2 2

51



Centre of Mass

Q.17

Q.18

Q.19

Q.20

52

m
=3 [4u? +v2 + duv — V2]

=2mu(u+v)

By energy compression

mv2+0= (2m) + kx?

k= =x=

at maximum compression

k = (m+m)v2 = k =mv?=mv/4.
—V

e
€ Ol

<‘§V@Tv

< (L-Vt)—>

JOVHZ (L -vt)? <L
VA2 + 221Vt L2
Vi—-L<0

L

<_
t_V

(A,B,D)

—\ —V

For minimum Kkinetic energy
MV, =3MV =V =V/3

1. (V¥ 1
) — [ Z3m 2| —=mv2

=2Joule
(ABC
2 m/sec 4 m/sec 1 m/sec V'
® ® ®

Momentum conservation
1x21-2x4=1x1+2xV'

V'=6mis
_6-1 1
€= 21445

Lossof kinetic energy =k, —k;

—lx]_x12+lx2><62
= Sx1x(12+ 5 x2%(6)

- (%xlx (22)? +%>< 2x (4)2J
=200J
(A,B,CD)

Inelastic collision
O<e<1

Q.21

Q.22

Q.23

Q.24

(B.D)
Given

Before collision

— U —> U,

O O

After collision

—)ull —=U;

O O

u,—u,=v, and u,-u, =V,

U, - U
= u, —u,

V, = -V, (elasticcollision, e=1)
In general for all cases
v,=-kv, kx>1

(©)
(a) The acceleration of the centre of massis
F
Som = m

The displacement of the centre of massat timet
will be

(A)

D)

(Q.22and Q. 24)

Suppose the displacement of the first block is x; and
that of the second is x,. Then,

2
mx, + MX, Ft _ X, +X,
= " om am- 2
Ft*
o X FX,= 5

(i)

Further, theextension of thespringisx, —X,. Therefore,

Xl_Xz = Xo (ll)

1 Ft?
FromEgs. () and i), X, = - | 5 + %o

1 ( Ft?
= (__XOJ Ans.

ad =75 | 2m



Q.25

Q.26

Q.27

Q.28

Q.29

(B)
As net force in x direction is zero. So from Q.30 (B)
momentum conservation.
mV,=(M+m)V,

Asnet forcein x directionis zero.
So by momentum conservation

T MV,—mV, =mV, ... @
! V+V,=V, @)
By solving

m_yd

o (M—m

V.= MVO Vl_VO M+m

2 M+m

(B8,D) Q31 (AB.CD)

Velocity of center of mass @ V*V,=V,
_MV+mv M-m

Veou= M+m =V Va=Vo-VolM+m

So both are at rest with respect to centre of mass. And

kinetic energy is converted into potential energy. _ (M +m)V, - VM +V,m

M+m

©

By Energy conservation = 2mv,

) M+m
lmvzzl(M+m) ﬂ +mah AmAV2
2™ =73 M+m) ™9 _1 _AmVo

K.E.= 5 XM x M +m)2
After solving ( )
h_( M ] vi MoV
=" {M+m) 2g ['h_(m+'\/|)29]
2
© CKE=- o
V, isthe velocity of particel and V,, is the velocity of T (m+ M)
wedge.
_2mv,
(b) 27 M+m
W Va © AKE.=k-—k
o]

(V,+V,)=vel. of particlew.r.t. wedge

mV, + M(-V,) mV, +mV,
- - M+m U M+m

:VO

(B0 (d
Asnet forcein x directionis zero.

So by momentum conservation

Mv,—mv,;=mV,,

andV,+V,=V,

Vie—

_1 4m?V§
o2

(M +m)?

4mM

= (Mm+M)?

-+ vel. of wedgeV , =

Vel. of particleV, =V, (

VCOM -

_ mv,
M+m

M +m

)-

=)

2mv,
M+m

M-m
M+m

MV, +(-mV))

J

Centre of Mass

53



Centre of Mass

Q.32

Q.33

Q.34

Q.35

54

(A)
ao =M,
m,+m,

Letm = (L +x)randm,=(L -x)A
where A ismass per unit length

(A)

During collision, forces act along line of impact. As
collision is elastic and both the balls have same mass,
velocities are exchanged along the line of impact.

Therefore ball B moveswith velocity 1 that isequal
tou cos30°. Ball A moves perpendlcular to theline of
impact with velocity V, | = u cos60°. Along theline
of impact, ball A does not have any velocity after the
collision.

Therefore velocity of ball A in vector form after the
collision

y\

= V,, cos60°i + V,, cos30°%
= (ucos60°) cos60°i + (ucos60°) cos30°j

Q.36

Q.37

[Ndt=p, -p andas p, =

jN dt = p,
= (mu cos30°) cos30i —(mu cos30°) cos60° |
=m.4. £ £ i = £ l

2 2

m
(3mi— 3 mjkg o

®)

SupposeV, isvelocity of bal B along theline of impact
and V, is velocity of ball A along the line of impact,
after the collision, as shown.

1
Then 5 (Velocity of approach) = Vel ocity of separation

113
2

7-“} =V,~vy

@)

B

Conserving momentum a ong the line of impact

V3

m. 7u:m.vz+mvl

(2
Solving and using u =4 m/s
NE

V.,=
22

. 33

V, = —cosBO°| -

[9. 3@]
= | 4= s

33

——€0s60°]

4 4

(A)
AsF .
mx, =mx, [
X=X, _
Now x; +x,=L sin0
LsinO

2

inxdirection=0
F.=0]

= CM;=



Q.38

Q.39

Q.40

Q.41

Q.42

.| L/2 cosg

©)
V,

=0andF =0

from momentum conservation
mv, =mv, =V, =V, = V(let)
Now energy conservation

CMx

1
mg/ (1—cos0) = 2[5 mVZ}
v2 =g/ (1—cos0)
. !
Distance from centre of mass=R = E

mv® _ mg/(1-cosb)
R 012
T=2mg (1—cos0)

SoT=

(A)
from previous question
Vi =V = [90(1- cose)]ﬂ2
®)
Only invertical direction
[ f =0aways]
i L L
So displacement = - — < cos©
2 2
=5 [1—cos 0]
(D)
Positive Negative
Ue—V'
e
0 Y
M, M M,
A B
—)V

By momentum conservation
O=m, (Uy—V)—(MyV'+MV)
m, (U g —V) =my' +MV'

mlu rel
m,+m,+M

vV =

(A)
r:net =0
.. COM is at rest.

<l
I
o

com

Q.43

Q.44

Q.45

Centre of Mass

Ue——-— —U

% B,

[ —V
-mu+mu+Mv=0
| (ml _ mz)
M
(A)
ml mz
ﬁ ﬁ _-)urel+vl
-— ]
U=V V'

my(U 4 +V)+MVv'=m (U, -V

. Imy-m,|U

rel
m,+m,+M

(A)p B)g (©)pr (D)as

(A) If velocity of block A iszero, from conservation of
momentum, speed of block B is2u. Then K .E. of
block B = %m(Zu)2 = 2mu? is greater than net
mechanical energy of system. Since this is not
possible, velocity of A can never be zero.

(B) Sinceinitial velocity of B iszero, it shall bezero for
many other instants of time.

(C) Since momentum of system is non-zero, K.E. of
system cannot be zero. Also KE of system is
minimum at maximum extension of spring.

(D) The potential energy of spring shall be zero
whenever it comesto natural length. Also PE. of
Spring ismaximum a maximum extension of pring.

A(@),.(B)pg (O)r(D)s

(A) Initial velocity of centre of mass of given system

is zero and net external forceisin vertical direction.

Since there is shift of mass downward, the centre of

mass has only downward shift.

(B) Obviously thereis shift of centre of mass of given
system downwards. Also the pulley exertsaforce
on string which has a horizontal component
towards right. Hence centre of mass of system
has arightward shift.

(C) Both block and monkey moves up, hence centre of
mass of given system shifts vertically upwards.

(D) Net external force on given systemis zero. Hence
centre of mass of given system remains at rest.

NUMERICAL VALUE BASED

Q1
Q.2

[6m/g]

[650.00]
Using relative velocity time of dlight before collision
will be

20
=50 "
By COM at the time of collision

t 15
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Centre of Mass

Q.3

Q4

56

3x10-1x10=4xv

2x10=4xv
5=v
Tl B h=12x10x1?
=5m
0
W gt=10ms"*
h- =15m!| | E 20—10><1=10ms‘1
15
" O
v=5ms?
For 1-D motion
V2=U2+2 as
=52+2x10x15 Q5
=25+300=325
K=650J
[800.00]
By conservation of momentum
—200xv, +2xv, =0
100v, =v, -1
v, =V,/100
Vo
(2] e
100 Q.6
100
t= v,
V,-t=Xx
800
X=v/2 v,
X =800m

[50]
At the topmost point of the trajectory, the momentum
of the systemiszero. From conservation of momentum,

MV, + MV, + MV, =0

a m =m,=m,
V,+V,+V;=0
The second and third fragments reach the ground

simultaneously, therefore vertical componentsof v, and
v, must be same; secondly, v, isdownwards, the vertical

V
components of v, and v, are — = (i.e. directed

2 Q.7
upwards)

for fi

for second fragment, h =

from

2
t
rst fragment, h = v,t, + =1

—v,t 2
i 9%
2 2

g(t5-t2)

equations(2) & (3),v, = 2 + t2
1

[18]

= Ju?+2g(h)

—\2

4

400=
400=

gtltz t1—2t2
) 2t +1,

=.,/29(5)

=100;v?=400;v=20

u?+2gh
w+20handh=3.8m

w=324=u=18

9]

_(2x4+1)(2)°

T,'ZU
= |l

2()(2) (v*

=2
2

t=1s

em)
Mim )2

v2=0+ 2aH
D=vt
D2=(2aH) t2

D2

2Ht

ol
2 m+ 2M

_ (m+2Mm)D?

[10)

2Ht’m

(2

e



QS8

Q.9

Q.10

L et displacement of plank be represented by xj + y]

For x-component
50[L —x]—100x—50x=0

X=

N

Similarly y-component
50[L —y]—-100y—-50y=0

_L
Y=4

. L
or||’|=zx/§

Thus T =——1-=
us 2 )

(501
By Energy Conservation
mg R 1m(/2R)%*e?

J2 2 3

=S o?=s =

2R

N 2Ncos45° = mx 39 Xi
ow, 2Ncos45° —mg = 2R 2

5mg

:N=ﬁ =50

[79]
From the principle of conservation of linear momentum
wehave

mu=Mv+my’

and mv' =(m+M,)v

or 20u=1000v + 20v’

and 20v’ = (20 + 2980)v

or u=>50v+Vv (i)
and V' =150v (1))
From(i)and (ii),weget 3u=Vv' +3v' =4v'or

V' =3u/4=75

(2]

The position of centre of mass of the systemisy.

mle+m2><2

Yem™

m; +m,

Wherem, =1kg, m,=(0.4 x h x 10%) kg

KVPY

Centre of Mass

y
m,=1
’ 1
H=10cm A
- lh
ycm z X

— (400 h) kg
h

1><H+(400h)><5 H + 200h?

Yem™ (1+ 400h) ~ (1+400h)

for y,.,, to belowest (minimum)

Wem _

dh
200h2+h-H=0
h=2cm

PREVIOUS YEAR’S

Q1

Q.2

Q.3

D)

36k, 9kg

«—20 mm—>

-~ external force does not work on system
So according to concept of centre of mass.
36x=9x%(20—x)

(B)

Qpom =8 —8cy (T)

8g/om =8 —8gy (‘L)

(B)
Applying thelaw of conservation of momentum,
mv +0=(2m) Vv’

vi=v/2

_1 2
KE=>(2m)yv -



Centre of Mass

30 36-x°
Q4 (D) 14 12x-x2
360 x —30 x? =36 x 14 — 14x?
16x2—360x +36x 14=0

Qsoolfis @ 360+ ,/(360)" - 4x 36 x 1416
- X =
(=27, 0) (-27.0) (45, 0) 32
Under influence of constant force centre of mass x_60£312 48 .
followsitsoriginal path 32 32
1
30x30x=
R 2_45m Q8 (B
10 a
«——————*(0,0 (0,0
+ H
it mx 27 + mx
m+m : /
x=63,117m T Y
<9 3> 10 (b bj
Q5 (D) 2 2/; 2'2

Using energy conservation and law of restitution and
momentum conservation.

< a >
Q6 (A b
CM will go downwards Q O’.[ a aj
; A (b bj 2'2);
Q. (A) 2’2
P(b,b)
_T_ X = mX, —M,X,
3m < om—m,
14m . . .
l m, isthe mass of squarewooden sheet of sidea& m, is
l «— X\ /46 X—> the mass of removed square portion of side b.

x-coordinate of C.O.M. of remaining A-shaped sheet.
= isareal mass density
=m, =&, m,=A\b?

<+— 6Mm—»

x(:f)(aj—ub%[bj
3m X _ 2 2
an ra® —ab?
4« XPpe—— 6 M—>6-X>
< > 3 13
12m Xcmzl a2 b2
2la"-b

3=(6+x)tan 0 {LM}

12 o y _l{aﬂbq
5 (6+X)(6-X)tn0d similarly Ten =% @ —1?
12 centre of masslies on point P(b, b)
X = X, ,=bandYcm=b
1.4=xtane{1——} &+ b?+ab=2ab + 2h?
12 @=ab+b?
2
14 X02=%) o a) _(a),,
12 b b
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Q.9

Q.10

E_\/§+l
b 2
(A)

Planar circular segment can be seen asit consist of Arc
element.

,A)

Y

Massof element=dm=c xr0 xdr

rsin9
centre of mass of Arc element isat 2

2
.. Centre of mass location of segment

R
[ orodr x rsin(6/2)
( rsing/2]) 2
> d
_ L”‘{ 0/2 }F 92
>dm jcredr
0
sin9
2| R® 4_sin(0/2)
2| —2 IRV
=70 RZ ~ 3 0
3x—
2
©

Equal are
1ah=ab
2
h=2b

h

b
M;—=M,—
13 22

mid-point of their common edge]

[centre of mass of combination at the

Qu

Q.12

Centre of Mass

M, _3b
M, 2h
ﬂ_ﬁ[l}
M, 2|2
M, _3

M, 4

(A)

Centre of mass of remaining cube x coordinate=b

X
’,

{_-_

T _"’,
o7t
VA

y

pagxg—pb3><9

2
X =
cMm pa3 —pb3
We will consider removed mass as a negative mass
pa’_pb*
b=_2 2
pa’—pb?®
4 4
N S
2 2

2a’h-2b* =a* - b*

put a=bx = 2b*x3b—2b* = b*x* -b*
23 -1=x*

23 -2+1=x*

2x3 -1 = (x? -1)(x2 +1)
2[x —1][x2 +1+ X:| =[x-1][x +1][x2 +1]

X2 +2+2X = X3+ x + X% +1
x3—x2—x-1=0

A)

Velocity of sand particlejust before striking the bottom
isv=u+at

v=0+10%x2=20m/s

pi = (0.2 x 10°) x 20

pf=0

[Ap| =4 x 103k-m/s

Ap,
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Centre of Mass

_ 4x107°x100 imu2+1ml(3u—vl)(3u+vl) =1mv§
1 2 2 2
fromequation ...(1
=04N equation...(1)
=m@Bu.v)=m(v,+Uu)
Q.13 (D)
L2+ Ly 3u+v .
@—»V @—» (Before collision) S+ (v, +u)(3u+ 1)_5 2
asm, >>>m, wecanassumev, ~ 3u
@_’ V' ®—> v (After collision) W+ (v, + u)(6u) = V3
=>Vv,=7u
e=1_V—V
\% JEE MAIN
— V=v_V PREVIOUS YEAR’'S
ViV =y QL @
;i i
K, =5~ &K
Q14 (B 17 2m; & 27 2m,
Beforecollision
O @ (2] <[
ul K2 - P2 X Ml
After collision
2
O— @ B Bl
Vi Va R) M :PZ_Ml_Z
By p, =p
_ M V2 Q2 (3)
= mu,=mv, + EVZ = Vv, + > U (D]
Q3 (2
Vv L1
Bye=I'= U = V-V, =U 2 M—Z:E
By (1) & (2) MV =MV, =P
Vo= - U, &V, = 4 id P
2T 3M*V1T 3 Ki=om, Ko™ 2m,
v _1 K M, 2
v, 4 K, ;1
_A_2,
Q.15 (D) =717 17
N Findly
g nitialy e, Q4 (D
—> v m ) Using linear momentum conservationin y-direction
3ug—eom, e, P=0
. D A ——
................................ v,om ; 1 1
=IMx ZV,—Mx =~V
from momentum conservation f 21 22
-mu+m3u=myv, +my,....(1) V=V,
from energy conservation
Q5 (1)

2

60

Lo +1m19u2 =
2

1 2. 1 >
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—a> X

AY

2

(cxnazxa)—cna—XSE
X = 4 2
com 2 T[fa.2
ona” - o——
4
q_3a 5
__ 8 _8_9%
Xecom = 1_1 § 6
4 4
Q.6 (30)

Before Collision

A 103m/s B
@ — O Ret
10 kg 20 kg

After Collision

10 m/s
. ¢
o 10kg

From conservation of momentum along x axis,

P =P
10x10+/3 =200 cos6

cosez—3
2

6 =30°

Q7 (3

From energy conservation,

after bullet gets embedded till the
system comes momentarily at rest

1
(M+m)gh= E(M m)v;

[v, isvelocity after collision]

sV, = 4/2gh

Centre of Mass

Applying momentum conservation, (just beforeand

just after collision)
mv = (M +m)v,

v=(MEm), 8 2.08+08x107
m 10x10
~831.55m/s
Q.8 (4
Vv, =,/2gh
v=e,/ gh =,/2gh
=e=09

S=h+2e¢th+2e¢h+.....

Q.9 (1)

C comes to rest

\Y
V,, ofA&B="

1. 5, 1
= —iS Vig = kx2

2 2
= |,|,><V2 = mV
TN T2k

Q.10 (4
C.OM of ter di 'atﬁ @
OM of quarter discisat -, -
=4

61



Centre of Mass

Q.11 (20)

Let velocity of 2™ fragment is y then by conserva-

tion of linear momentum
10(10V3)i = (10) (20j ) +10v
— v =103i -10j

V| =+/300+100 = /400 = 20m/s

Q.12 (1)

ml m2
—> ° < —>
m, m, \ \
myv, =-myv + myv
m2
v, = _V+le
(Vi+V) m,
vooom,
e= \2,—]=1
— Vl
V=72
v,+v, /2 m,
v,/2  m
_my
3= m,
Q.13 (4)
Q.14 (1)
Q.15 (2)
Q.16 (25)
Q.17 (25)
Q.18 (3)
Q.19 [?2]
Q.20 (3)
Q21 @
Q22 [1
Q.23 (%0

62

JEE-ADVANCED
PREVIOUS YEAR'S

Q.1

Q.2

Q3

)

/Zh
R=u, | l—
g

[2x5 [2x5

=V, |— =V, |[—

= V,=20m/s,V,=100nVsec.
Applying momentum conservation just beforeand just
after thecollision
(0.01) (V)=(0.2)(20) +(0.01)(100)
V =500 m/s

4

ANNANNNNNNNY

Emu —% 0.06+ — m‘@h

—

1
5 *X018LP=01x 0%88 10x 0.06

,/5961

To completethevertical circle

\/97 = /590,

21

7, =2



Q.4

Q5

Q.6

Q.7

(A)
At the highest point
Vu, -2gH A

U,CoS
m®—> s me® om®—>V,

before collision after collision

U, COS
v, = OTOL (by applying momentum

conservation in horizontal direction)
_ Ugcosa ,
v, = — (by applying momentum
conservationin vertical direction)
_ugsin®a

(H 29

0=45°

(B)

(Befare t
collision) L

1 2.2
= —mg-t
K 5 g

K o t? : parabolic graph

then during collision kinetic energy first decreases
to elastic potential energy and then increases.

Most appropriate graph is B.

(AB)
If speed of point massisyv, then using conservation of

. mv
linear momentum V = —

1 ., 1 mv)? 1, m
mgR=—mv +-M|—| ;mgR==—mv"|{ 1+ —
2 2 M 2 M

ve |29R MR
1+ ;XM:_[M+mj

M
(ABC)
" = au, o = constant

>

w. r.t plane

Q.8

Centre of Mass

(U +v)

(u=v)
< ..
Before collision

— >,
Before collision

After collision (u' +v)
u-—v
( )— After collision
A
F‘railing || Fleading
Ftrailing: ZPA(U, _V)2
leading Ftrailling =2pA(4u'v) = 8pAu'v
Pressure difference
Fouo—Foi
Area

Net force on plate

mdv
Fo =F—8pAauv=——+
dt
After long time v will be sufficient so F = 8pAauv
After that v = constant, i.e. plate will achieve terminal

velocity.

(D)
P
~ I
/ IR Maxi
| R=Maximum
A MR 1 height
|
|
(7)==
cos| —|=—
n R
A=R-h=—"1 __p
COS(TE)
n
—h 1
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Centre of Mass

Q9  [6.30] 1
= KE, =-mv
1=l —— 2
W77 i e
_ KE
v=ve V" Lol _ 4
KE,

J
Vo =—=25m/s
0= =25/

v=ve V" or
dx t/c vV ) 2mv
— =V — |2~
|5/ 5
X T _x
de = voje‘t/Tdt Jefxdx _& <
0 0 -1
~ X L
T mv2
ef’[/'r F= »
X =Vq
1
- 2
t b 3 av _mv
X
X = 2.5(—4)(e‘1 - eo) dv  dx
v x
x = 25(-4)(0.37-1)
V2 e Xl
X =6.30 In—2 =In =+
Vl X2
Q.10 (B0 VX = constant = on decreasing lenth to half K.E. be-
comes 1/4
o—>»v, Ve vdx +xdv =0
< 3 > Question Sem for Question Nos. 11 and 12
Q11 [0&Q]

2L
(1) averagerate of collision= v
(2) speed of particleafter collision=2V +v, Q12 [750]

changein speed = (2V +v ) -V,
After each collision=2V

v
no. of collision per unit time (frequency) = oL

changein speedin dt time=2V x number of collisonin

dttime
=dv=2V (l) d 45° 5mis=u,

2L)" vV < = > Y
vdL
dv=——
L 20U, _2x5x5_
vdL RangeR= """ ~
Now, dv:—T {asL decrease}
2u, 2x5
Yav  S%dL Timeof flight T=—-= =757 =1sec

_J'T g

Vo Lo

= [Inv]; =-{InL]}"
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AY
2m 5m/s
----- P
T T
e : e
< i N
g H ™,
r i *,
. >
Just before splitting X
'S
m V
PO g wy O DER
L - m é .\\\; ..........
‘O 1 \‘ ~~~
P E ‘\ \\
i H . * N
7 H Y o
¢ ] A N "
O% ~ ~ >
< > < »< > Ty
R/2 R/2 R/2

Just before splitting
. Time of motion of one part falling vertically

T
downwardsis=0.5sec= >

T
= Time of mation of another part, t :E =0.5sec

From momentum conservation = P, =P,
2Zmx5=mxv

v=10m/s

Displacement of other part in 0.5 sec in horizontal

o T
direction =VE

=10x05=5m=R
.. Tota distance of second part from point 'O’ is,

X:3—R:3><E
2 2

X=75m

=1t=05sec

Centre of Mass
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Rotational Motion

[ EXERCISES

=l

j V=0nx

v
from above we get co=? but ® =

dt

is not depend

ELEMENTARY ' . .
Q.1 ) on distance (r) from axis of rotation.
0 = ot
0 27x3000Xl Q8 (3)
60 As disc is lying in the x-z plane, so applying
perpendicular axis theorem :-
Qz (3 L+1,=1
30+1 =40
(D:E:l rad/s :
60 30 = 1,=40-30=10kg nm?
Q3 (1 Q9 (2
mr?
2r .. . .
T= o if time period same then o will be same
Q.10 (4
LAk
=N0) -
& a, f, Q11 (1)
2
Q4 (4) (7 §§ | = 2|\gr =Mr?
rot 300
f =300——; ratationin1sec= —— =
min 60 012 (3
angle described in sec =5 x 21 = 10 7. '
Given’ Isolid sphere = Ihallow sphere
5 4
° N gMr2 = ng2
Relation between linear acceleration (a) and angular = 5tz
acceleration (o) is :-
g=axR L RS
0 r; 3
so, R= &_2 . 2m
a 5
r
Q6 (1) = ==V5:43
V=or 2
r is perpendicular distance of particle from rotational Q13 (3
axis so correct option (1). '
=1, +1,+ 1
X
A
vV = or r is perpendicular distance of particle
from rotational axis so correct option (1).
X
Q7 (4
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Q.14

Q.15

Q.16

Q.17

2
lh =g MR?

g:u=§MRﬁmM¥=£MW

= | :EMR2+ZMR2+ZMR2
5 5 3

16

| == MR?
5
(2)
y
M, L
X
M, L
M, L
=1 +1,+1,

2 2
:£+£+0=EML2
3 3

(1)

given, o, = 20 rad/sec
o=0
| =50 kg-m?
t =10 sec

o-o, 0-20

- T —_ 2
n 10 2rad/sec

oc=

and T =1 o =50 x 2 =100 kg-m?%/s
=100 N-m

(4)
Given ; [t =2N.m., o = 2 rad/sec?, k = 2m]

Q.18

Q.19

Q.20

Q.21

Q.22

Q.23

Rotational Motion

(1)

-

Initial Fna

Applying conservation of angular momentum :-
l 10)1 = |2('02
2n

= lyx = 1,0,
T

= 100><i—g:[100+50><(2)2]><(u2
. 2n
on solving, ®, = 20 rad/sec

(3)
From L = constant
L=l
Becauset,, =0
Due to drop the wax on disc moment of inertia of its
will be increase so will be decrease.

(2

1,,=0, SoL =lo = constant when girl moves from
edge towards centre | will decrease, and ‘®’ will
increase.

(2)

2
wherev=cr and 1=1 =§mR2

(3)
Because sphare has maximum translational lurchi
energy first decrease in Potential energy.

(2)
Acceleration of apurely rolling object on an inclined
plane is :-
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Rotational Motion

Q.24

_ gsin®
2
=
K> 2
for spherica shell, 3
K 1
for solid cylinder, =5

gsin®

)
1+
o (5 s

, acylinder - M B 10

-

(1)

K2

. K roai R2
Fractlon — Rotation — RK2
Total 1+ ?

K2
For disc, ?=

‘N\I—‘

so, fraction = =1:3

1+

N

JEE-MAIN
OBJECTIVE QUESTIONS

Q.1

Q.2

68

(2)
®, = 3000 rad/min
3000
O~ rad/sec = (50 rad/sec)
t =10 sec
o,=0
o, = o, +at
6 =50 — a (10)
o = 5 rad/sec?

0=o,t+ 2 t?
= o, > o}
1
0 = (50) (10) + > (-10) (10)?
0 =500 — 250 = 250 rad
(3)

V=0oR
V =10 x 0.2 = 2m /sec.

Q.3

Q4

Q.5

Q.6

Q.7

Q.8

Q.9

3

o=V Ir

o = 3cosb/r
3 8 24

(1):—><—=—2
rr r

INACAB

y

N

—>3ms, (15.8)
A B0

/’I:' “* w= VL /r

(0, 8)

0
'\"O
O¥———>x

r?=(15)*+(8) = 289

o= ———radls

(3)

m, = (c.nr’.t)

m, = o.m (2r)? (t2) = (o2np?)
m, >m,

R,>R,

so, I; >1,

(1)

I= J‘dmr2

I=r2jdm =r2m=mr?

(1)

Gy >0,

I;>1,

0, If the axes are parallel I, <1,

(3)
I,=1,+Md? Then 1,>1,

(4)

Moment of inertiaof the elliptical disc should be less
than that of acircular disc having radius equal to the
major axis of the elliptical disc.

Hence (4)

(3)



Q.10

Q.11

Q.12

Q.13

m m Q.14

2 2
L, =L +1,

oY oY

(m2)(3) 23] e

b=—"3 "7 3 “n
Q.15

(3)
I +1 =1
X y z
21 =1

I, =2 x 200 = 400 gm cnv.

(4)
Moment of inertia of a body depends upon mass and
distribution of mass about the axis.

(2)
Q.16

I I, I
Moment of inertia about

2
diameter of sphere | = Emr2

Moment of inertia about tangent at their common

point I, = gmr2+mr2 XZ:Hmrﬁ =7
5 5 1

(4)

Moment of inertia of disc

2
about diameter | = %= 2,

mr?=8

\
/

[ I

Moment of inertia about the
axisthrough a point on rim.

Q.17

2
11=m4r +mr? =10

Rotational Motion
(1)

2
Moment of inertia of solid sphere |, = gmrf

2
Moment of inertia of hollowsphere |, = §mr22

2 2 2 h_ |3
Zm2=Zmr? o 2= 5
m* 3 271 \3

(1)
M inertiaabout yy’ axisare
=1+ +0L=21 +1, (1 =1)

2 2
MR o MR” |, MR?
2 2

MR?
{' :[ 5 +MR2H applying parallel axis

theorem = 7/2 MR? = 7/2 PQ>

(4)

1 Ma’ di

(1) 5 (disc)
(3% 5

4 12 4
AN
2\aa&¥>m (2ay
4 12
(2) Marn9

2
— (square lamina)
(3) 3 Ma?
(4) 4 Rods forming a square of side 2a.

2
[me m
" 4 12 4

ma?® 4ma

+mat =
m 3

2

(2)

_ MR?
T2
(pasing through 0)

69



Rotational Motion

Q.18

Q.19

Q.20

Q.21

Q.22

Q.23

Q.24

Q.25

70

(4
M.O.l. about C.O.M. is Minimum
I=l., + Mx 2
| =2x2-12x + 27
dl

X =4x-12=0

=>Xx=3

(2)

mr?

t=la = X0

o = 0.25rad/sec?

(2
T=la
T = constant = o = increases

(4)

0=+t ot

100 = 10+a(15) = o = 6 rad/sec?
T=loo = 60 Nm

(4)

T=la

2=1%x2 =1=1kgm?
| = MR?

1=M(2)?

M—l

-~k
2 ko

(1)
’C=|0L=(ml’2)(1

r? r?
Now, t. = (2m) —xo=
Tl ( ) 4.><Ot 2

T
X0 = T, ==
2

(1)

t=la

T, =T,

IA G’A = IB (X’B
I, <Ig
o, > oy

0, >0y

(1)
F =20 +3 + 4k

—

F, =—2i —3j — 4k

Net force F,=F +F, =0 the body is in
tranglational equilibrium.

Q.26

Q.27

Q.28

Q.29

Q.30

— -

n =3i+3J+4k r, =j
- -
T, =0 X Fl

= (31 +3j+4K) x (2i +3j+4k)

T = 9k —12]—6]+12i + 8] —12i
T, = —4]+3|2
i, =1, x F, =(j)x(-2i -3j—4k)

=3k +4]
(%1+%2 :—4i+312—312+4]:0)
body in rotational equilibrium

(3

F=4i —10]j
r=(-5i -3])
T= ?)(_li

=(-5i —3]) x (4] —10])

50k + 12k =62k

(3)
£ =2 +3]-k apoint (2-3.1)
torque about point (0, 0, 2)

—

r = (2?—3]+|2) — 2k

N

;X = (2 =3j—k)x(2i +3j-k)

al

al

= (61 +12k)
i

= (6V5)

(3)
torque of a couple is always remains constant about
any point

(2)

Torgue about O

Fx 40+ F x 80— (Fx 20+ F x 60)
In clockwise direction

= Fx40

(3)
N,=uN,,



Rotational Motion

uN, +N,=mg,t,=0= 3u?+9u—pn-3=0
3u(p+3) -1 (n+3)
3 = (u=13)
3N,-4N, - 5 mg =0
Q31 (2
As shown in FBD — Equation in verticle direction
UN, N, + N; =mg
Taking momentsabout ‘ A’
N, A mg.x = d.N,
mg.x
N, Ng= =4~
mg 4 ® d
HNZ 3 NA? X ‘NE
1 | ¢ COM
Hencep = 3 Ans. A l B
mg
Aliter | d ’
fa N, =mg-N,

Q.32 (1)
W A
] O
Using force balance i—x A X
f,=—uN,; N, +f,=mg < >
L) !
f,=uN, N,=f, weight of object = w
N, = uN, W (£ —X) =w,X
2 0]
Using aq (1) If weight is kept in another pan then :
N, + uN,=mg W,(£ —X) = wx
N, +pN,=mg L (i)
By (i) & (ii
[ mg ) y (i) & (ii)
N1+ 2 w w
1+ — =1 =
u W, = w =SW=w,w,

torque about point B = 1, = 0 For rotational
equilibrium W= JWW, .
f, x 4+ mg (5/2 cos 53°) = 3N, !

3mg _ Q.33 (3
AN, + 2 =3N, Body is rotating uniformly so resultant force on
am particale is centripetal force which is horizontal and
Tg =(3-4p) N, intercecting the axis of rotation.
3mg mg Q34 (4

> == (10 COM
N<1+—o e )

3 (3—4u] !
> >
2 1+ Q ) Y
3+3H2=6—8H N = m(DE
3u2+8u—-3=0
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Rotational Motion

Q35 (1) mgL = l.[lmﬁj ?
Initial velocity of each point onthe rod is zero so 4 2°\48
angular velocity of rod is zero.
Torque about O me? %
t=la [ ooy = E”n(:‘rj
m¢? 20(1.6)*
20g (0.8) = o= 20g(0.8) = o

) 7
8 3 [[=-om?=o0= @Ans.
3 48 70

=9 = o = angular acceleration

3.2
Q.39 (4
<« 0.8m—> Torque about B
_ 159 . !
= o= 16 2N
20g 1
Q.36 (3) A ;
Beam is not at rotational equilibrium, so force < X <
exerted by the rod (beam) decrcase 6N (3-x)
2x3=6(3-X)
Qs @ 6=18—6x
A 6x = 12
M X =2m
: Q40 (3
o 1~ By torque balance
6L, =mL,
(1)
mL, =4L
of--onooee A @
hinge 16 x 4 = n?
. . m = 8kg
using energy conservation
(1 Q41 (1)
mg 272 lo t=la
o = constant
o1 me 5 Its angular velocity increases
mg>=5-"350@ But force on hinge is constant
) _ [3g Q42 (3)
feimo =47 AL_10
Tavg = E = ? = -m
,=or= 3 = (V%)
Q.43 (4)

Q.38 (3)
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Q.44

Q.45

Q.46

Q.47

a
fr:Mgsine:uMgcosefr.E:N.x:r

a .
MgzsnO:rN

(1)

lmg 3al4

XX’

For topling about edge xx’

min. 4 g 2

[n) “_“_/

By work energy theorem

E_lm_Lzmz
27273

w=

39
L

(4)
Zlw? =1000

o =10rad/sec

N

Q.48

Q.49
Q.50
Q.51

Q.52

Q.53

Q.54

Q.55

onf =10 = f=§rad/seC:@rad/min
T e

(2)

P=7.4 >P=t0

P=1 a t

Constant

(1)
(4)
(4)
©)

Ta0=1=0c0
dw =td0=c0d0
|dw =|cod6
w:lce2

2

(3)

N
T

dl _ 4A,-A, (3Ao]
it -

(2)

= L = (mvd) = constant

becouse v = const. and d = const.

4

X=V,C0845° x t = NA
mgv,t dL
r:mgX:T :E

Rotational Motion
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Rotational Motion

MWVo | tdt - mvg Change in momentum = 2mV cosf = J Fdt

L= =
= V2 0 2J2g . Changein angular momentum
= |Fddt =
056  (4) I 2m Vdcost
L=Iw
®' =20 Q.63 (2
1(1, 2) 1 1 (pRY V2
= I . PN _ _ H
3 (3] =g rer e-3' 3]
o’ 1
o T 4e? ZMv?
4
I
I' = (gj Total KE = =lw®+=mv?
I o 1
I _ _ L - 2 - 2 ~ 2
L—Ico—82(o—4—(A) MV? +2 My’ = 2 mv
. 1
Q.57 (2) Ratio = 7
No any external torque so L = constant;
I1("‘)1 = I2(02
(MR20) = (MR#+2mR?) o, Q.64 (3)
_ (M@j oR
= 2= (M+2m
Q.58 (3)
external torque T, =0
Ilo)l = IZ(‘OZ
when he stretches his arms I . _ _ [ 2 - (u/2
o 1,<, For purerolling oR=u, v =,/u’* +(0R)* = ( f)
then (o, > ©,)
s0, (L = constant) Q.65 (2)
Q.59 (4)

B
Torque 2v
Q.60 (3) Vv
1, 5, A
Elu) =10 = Eo) =10 = w=2rad/sec

Angular Momentum
L =lo=5x2=10joule-sec.

When A point travels ¢ distance then B point 2¢ so,
2/ length of string passes through the hand of the boy

Q61 (2)
o, =10,
M R?w,=MRZ o, Q.66 (1)
R, o, 3 f mg sin 0
R, o, 1
¢)
Q.62 (2) mg sind —f = ma
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Q.67

Q.68

Q.69

Q.70

Q.71

{mgsine—f}
q= |20
m

aissamefor each body.

f.R=1Ia
fR

o=
mk?

2
For solid sphere k2 = 5 R? is minimum there fore o

is maximum hence, k.E. for solid sphere will be max
at bottom.

(2
gsino
a= 2
) k> 2
For solid sphere = F:g

2
For hollow sphere = 3 mMR2 = mk?

so k <Kk,

thena >a,

(so speed of solid sphere is greater then hollow
sphere)

(1)

a = (g tan 0) so net force along the indined plane is
zero so it will continue in pure rolling with constant
angular velocity.

(4)

Thereis no relative motion between sphere and plank
sofriction forceis zero then no any changein motion
of sphere and plank.

(1)
Dueto linear velocity body will move forward before
pure rolling.

(1)

Disk = le®+ = my?
T2 2 !

IMR*V: 1, 3,
== —L+=mv; =—mv;
2 2 R 2 4

Q.72

Q.73

Q.74

Q.75

Rotational Motion

. 1 1 1 vl
ing= Zlo’+=mvo==mr’x—2+>=mv; = mv2
2 2 2 R® 2

1
2 mv? =mv;

ﬁ_(ﬂjuz
v, 3

2V

h= L« 2 ure + Tyve
= — x — — + =
mgh=5 >3 "RZ T2
h—iMV2+1 V2
mg—3 2m
h—E VZ V2—6ih
mgh = mv?>= =
(1)
E=Ma
7R
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Rotational Motion

Q.76

Q.77

Q.78

Q.79

Q.80

76

_F
= a= M
For pure rolling
a=aR
FxR=la

_FR
4T

F _ FRR

m |
| = MR?

MR? is the moment of inertia of chin pipe. Q.81

(4)
(3)

Q.82

o is conserved about O
lo,—mVR = 0=
2

2

2V, Vo 1
°" R

[w,=mVR

Q.83

o,=mV R

@ :>C°0R_2

(4) Q.84

Astheinclined planeis smooth, the sphere can never
roll rather it will just slip down.

Hence, the angular momentum remains conserved
about any point on aline parallel to theinclined plane
and passing through the centre of the ball.

Q.85

Q.86

(2)

I3

L2
N

/ Veom

L/2)

e AV

oL
Veom — 7‘

(4)
(8) M is instantaneous axis of Rotation (1.A.R.) (b)

Magnitude is same but direction is different

3

VL
Vl + V2 \\‘

1)

2

Moment of inertia of disc = mr . 0.5 mr?

2
Moment of inertia solid sphere = 5 mr?
(2)
M.l.=mr2=4x 12=4 kg m?.
(4)
P=1®
(4)
L=m(r x V)
=2x2[(i + ) x (i = + k)]
=4(-k-j-k+)=4(-]7-2k)

N
L = Angular Momentum along z-axis is the

compoent of angular momentum along z-axis.
i.e. = — 8 kg-m?/sec



JEE-ADVANCED
OBJECTIVE QUESTIONS

Q.1

Q.2

Q.3

Q4

(D)

Given a, =2a =5m/s?
= a =52 rad/s?

= a3 =1(a) =52 m/s?

(B)

The given structure can be broken into 4 parts

For composite frame :(by symmetry)

2 2
4me” %} 10 Q.5

122015 +1g] = 2{ 3 3 | 3m™

(D)

Pearpendicular axis theorem

from symmetry I = I

mr?
4

Perallel axis theorem
I,=1+mr

= [=

mr? 5
= —— +mr2= — mr?
4 4

Q.6
(B)

MI of the system w.r.t an axis | to plane & passing
through one corner

Rotational Motion

2
2
_ ML2 ML2 . ML +M(\/§Lj

3 "3 1 2

2ML2 {ML2 3ML2}
+ _+
3 12 4

_2MLE? , oM _ 3ML®  18ML?
-3 2 3 12

3Lz
2

3
Now E ML2?=3k?

[=1 +1+1,
- _3 2

L=1= Emr
_mr?

L= 5

7
I=1+L+1= Emr2

Moment of inertia = 3mk? where k is radius of
gyration.

3mk2—zmr2 k—\/zr
—2M =56

(D)

) M
Taking mass of plate m = s
Then MI of two plates through which the axis is

77



Rotational Motion

2 maZ
passing = x 2=
3
M.I of 4 plates having symmetrical position from the
axis
ma2+m(§)2 ma’
=4x1T12 2) 74%| 3
Total MI = 4ma’ .\ ma’ _ 5ma’
-3 3 3
usin M =m=MI= SMa’
9% """ g

Taking cylindrical element of radius r and thickness
dr

M
dm= m X (2mr £ dr)

I, = J.dle/ = Idmrz
R

2
2M 3 1
= I—-r dr_ =M (R?+R?
Rl(Rg_Rlz) 2 (R; 1)
Using parallel axis theorem

1 M
e E|\/|(R§+Rf) +MR2 = 7(3R§+R12)

X

Q8 (A)
By perpendicular axis theorem moment of inertia
about any axis passing through centreand in the plane
of plate will be T (by symmetry)

Q9 (B)

2 MR?
MR , Square lamina= 6

Cylinder =

2
Solid sphere = c MR2

Q.10 (C)

78

Q.11

Q.12

oM ME?
2 YT

L+, =1,= 1+,

2M.L% e
12 = 2|13 |1— E
©)
P Q
S R
In case PQR
rislarger.
(B)
A
@ '
@ S50
N2 L '
L[\ g 159
L ‘\
)
L L2
r= ﬁ cos30°1, + 1, = ——
L/3 ML?
= —F = |1: —_—
22 12
. ML®  ML%.3 _ 2MmL®+oMmL?
12 8 24
. 11IML?
24

Thefigure showsan isoscelestriangular plate of mass
M and base L. The angle at the apex is90°. The apex
lies at the origin and the base is parallel to X - axis.



Q.13

Q.14

Q.15

Q.16

Q.17
(©)
T=Tx F
=(-bi —ck) xaj
= (-bk —c(-1))
= bk +ci
Q.18
(©)
t1,=0
LA L
T, T,
A
M1
) 3L/4 i
L} L 1
T, x 3L L 0 1
Xy MG (@) Q.19
2mg
T,= 3
T,+T,=mg )
mg
T=73
h_2
T, 1 Ans.
(D)
In equilibrium, torques of forces mg and Mg about
an axis passing through O balance each other.
L L
mg.E cos30° = Mg 5 €0s60°
Q.20
LY
m
(©)
For rotational equilibrium
N, N,
T L RN R
4 L
N1 X Z = N2 X E
N,.:N,=4:3

Rotational Motion

Balancing torque about the centre of the rod :

/ 0 _
g N7 =0 Np=N,

N
4

©)
F . = (400-100)i + (200+200)] = 300i +400]

= |F| =500N

Angle made by IEnet with the vertical is 6 = tan™

w0y
200) =37

also t = 500 R therefore point of application of the
resultant force is at a distance R from the centre.
Hence (C).

(B)

For the circular motion of com :

(0]
=

com

L Zg

= 2 = —_—

mg m(_zju) = o L
Note : Since the reaction at the end is zero, the

gravitational force will have to provide the required
centripetal force.

(B)
Let o be the angular acceleration of rod and a be
acceleration of block just after its release.

mg-T=ma ... D
¢ me?
Tf—ng— 3 o ... (2

and a= /o . (3)

79



Rotational Motion

Solving we get Q.24

5mg

_ _3
T= 3 anda—sé

Q.21 (B)

x=0
bt
I ()

IVANEER
im 4m Im

N, +N,=(M+m).g

rB=0

N;.4=Mgx2+m(5-x)

N, N,

N 4

s

— _—

Q.25

Q.22 (B)

2/3L

Net force=0
T+N=Mg
(1)
Net torque about B = 0
1, =0
Q.26

2
NL=Mg. 3 L,

2
N=—M
3 g

Q.23 (A)
The tendency of rotating will be about the pont C.
For minimum force, the torque of F about C has to
be equal to the torque of mg about C.

{+2)-nl3)

mg
= F= E Ans.

80

(B)

For maximum a, normal reaction will shift to left most
P
img

position.
Y.
L.
©O) ©)

b
1,

for rotational equilibrium t_,== 0 [in frame of truck]

b gb

l
maE—ng = a= /

(B)

f =

max

N |-

§| «Q
N _T—> =2

M

> Mg/3

Mg/3 <—
WZ/ W
Mg
f=Mg/3
Torque Balance
Mg a Mg a
"2 3 2

3 =N. X
Mga
3

o))

=mgx=x= 2

(A)

3b/4

Mg

e = HN
(1)
f=F
(2

1, =0

(3)
3b
F. = =Mghb/2

f=F=2Mg/3
f>uN = 2Mg/3 > u. Mg

.2
=3



Q.27

Q.28

Q.29

(©)
For (rod + particle) system :

UmeEYvi) 1 3¢
ol 3 /2 +Emv =2mg 2

[Since, com will finally reach a height 2(3%)]
= v=,/45¢9/

(A)
22
Decrease in PE = ®=®=®
m 2m
Increase in rotational K.E

m

(©)

By Energy Conservation

5 L/4
1 M L 3g
< = 3
2 2x3 |2 L L/2
Mg Lo e
= 4( —cos 0) H
ML? Mg

L
L xg= 5 (1—cos0)

1
cose=§:>e=600

Q.30

Q.31

Q.32

Q.33

Q.34

Q.35

Rotational Motion

so (L) may increase

(&)

1% method : The direction of L is perpendicular to
the line joining the bob to point C. Since this line
keeps changing its orientation in space, direction of
L keeps changing however as o isconstant, magnitude
of L remain constant.

29 method : Thetorque about point isperpendicular
to the angular momentum vector about point C. Hence
it can only change the direction of L, and not its
magnitude.

(A)

1% method : The angular momentum about axis CO
is the component of angular momentum about point
C dongtheline CO. Thisisconstant bothindirection
and magnitude.

2" method : Torque about axis CO is zero hence L
about CO isconstant in both direction and magnitude.

(D)
Conserving the angular momentum : about the hinge
m(a®+4a’) 5

2
mua = +-—ma’ (o
ua= 12 4

Ans.

U

e

I
olw
o | =

(B)

Since the work done is independent of the
information about which point the rod is rotating,
by work-energy theorem the kinetic energy will also
be independent of the same.

Hence (B)

(A)
By conservation of angular momentum about hinge
0.

L=Tw

81



Rotational Motion

d {Mdz (df}
mv— = +m{—=| |®
2 12 2

mvd [ md?> md? J
= + o
2 4

r‘n—\/d—gmdzm ——=®
2 4 =~ 3d

Q.36 (D)
- J.T.dt =mv-mx5
..(1)

.
(2)
v
® ==
r
(3
JT.dt:m
2
5 _ v 5_3_" _100 m
M-MV="5"9=5"V773 Sec
Q.37 (C)

Angular momentum conservation
MVR = (MR?+ MR?) .

Vo
R - ?
Q.38 (A)
J.r. dt = 1o -0
2x (1)?
10x 1= T x ®» = 15 rad/sec
o = 15 rad/sec
1 2x()?
KE == x 2O o 152275 Joule
2 3
Q.39 (D)

(1 +mR?) . ®=1Io'+mvR

. (I+mR*).0o-mVR
o =
I

Q.40 (A)

31<

()

82

Q.41

Q.42

o)L_0
|:e:_(V1_V2):| _ 7
u, —u, ' \%
ok _y
= 5> =
mVL ML? mvL ML®> 2V
— = — = X —
2 3 ©7 2 3 L
M_3
" m a4

(C)
Immediately after string connected to end B is cut,
the rod has tendency to rotate about point A.
Torgue on rod AB about axis passing through A and
normal to plane of paper is

me? 14 K's|

a=mgy =a=o,

Aliter : Applying Newton’'s law on center of mass

mg—T =ma

Writing T = low about center of mass

TA
02
[ >

lmg

rl-m, (i)
2 - 12 e

Nwa:ga (i)
From (i) , (ii) and (iii)
3

o= 5

20

(©)

f

Frictionwill at forward dir so body will always move
in forward dir.



Q.43

Q.44

Q.45

Q.46

(D)
FBD for sphere & block

f
gmg <«fi Tanla
@:{—fm 2,3
' <

- &,
& = ugi
8, =—ugi
8y =8 —8, =2ugi
are| _2“9 Q.47
(C)
Using Energy conservation, 48
(at maximum distance V =0V =0) Q.
1 .
Eszz(mgxsm 0)
_ (ngsineJ
=K
(A)
10Tm/J Tzo m/d
20=V_, +wWR
!’
20=10+® >
()
- = Q.49
10 5
(wn=20rad/ se)

(D)

Since the two bodies have same mass and collide
head-on elastically, the linear momentum gets
interchanged.

Hence just after the collision 'B' will move with
velocity 'v,' and 'A'" becomes stationary but continues

%
to rotate at the same initial angular velocity (on .

Hence, after collision.

Rotational Motion

1 5
(KE)y= MV

1 1(2 v, )
and (K E), = Elcoz - E(ngZMEOj

(K.E)g 3
= m—EHence (D).

Note : Sphere 'B' will not rotate, because there is no
torque on 'B' during the collision as the collision is
head-on.

(B)
Disc in pure rolling and external force zero after
smooth surface pure rolling continue.

(A)

Just before collision Between two Balls

potential energy lost by Ball A =kinetic energy gained
by Ball A.

mgh

7T
After collision only translational
transfered to ball B

So just after collision rotational kinetic energy of

mv

cm

gl

5
= ?mgh =mvi =

=~

inetic energy is

1
BalA=—

. _ moh
5 Men =77

(&)
Let velocity of c.m. of sphere be v. The velocity of
the plank = 2v.

1
Kinetic energy of plank = 2 x m x (2v)?

=2mv?
Kinetic energy of cylinder

1 1 1 2 2)
= Zmv2+ —+| —MR“®
2mv+2+(2

1, 1 31
= =Mmv|l+=| = = =mv?
s (103] = 3 Ly
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Rotational Motion

Q.50

Q.51

Q.52

Q.53

84

K.E. of plank 2mv?

K.E. of sphere = 3 o

8
3
©)

The horizontal shift of end x will be double the shift

S
of centre of spool. Hence centre travels by 5

(D)

Torque about COM
fR=1-a(a=aR)

mR2 mR2 ma
- - R L
fR=— a—( > J:(f 2)
(B)
|
/
m
f 9
f=4ma e (D)
(mg —f)r = (3mr2 + mr?) o
mg—f =4 ma .. (2

from (1) and (2)

= 8ma=mg
9

-9 -
= a=g S a=g

(B)

VO
Here, u=V,, oy=

2R
At purerolling ;

R
V=V,- )t

V_ V% (R .

& §:_2R+ MR t (In pure ralling V = Ro)
T F.R

©@=7=1mR?)

VO
= Vy=-V=V+ 7

V V,
= 2v=2=v=-LlAns
2 4

Q.54

Q.55

Q.56

(D)

As the disc is in combined rotation and translation,
each point has a tangential velocity and a linear
velocity in the forward direction.

From figure

V¢« (for lowest point=v —-Rw =v-v =0.

2 2
Y Y,
and Acceleration= — +0= —
R R
: 2 VIR
v =Ro

(Since linear speed is constant
Hence (D).
(A)

Angluar momentum conservation about contact point

muR = (I,)®

HONO,

Since there is no slipping at any interface, the
velocities of bottom and upper most point of lower
and upper cylinder are shown in figure.

.. 3
Therat|0|sI



Q.57

Q.58

Q.59

Q.60

(D)

N B_>F2
Torque about point A Q.61
d |——Fr
4
A h

> F

R+h +F_( Fel F+Fj
2 2

FE 3 (3 Fj
L _—F_-E=|-R+K-—-+
2> 2 hREG 2
(0)-(59

4 )" La 2
oF _ 3k

4 4

5F, = 3F,

Fl‘[gj

F, ~(5)"

©)

(A)

fe— ——>F

(D)
Due to torque of friction about CM ® eventually de-
creases to zero, initially there is no trangdlation. Fric-

Rotational Motion

tion is sufficient for puse rolling therefore after
sometime pure rolling beging. There is no externa
forcein x direction therefore momentum s conserved
along x direction.

(D)
5gsin6

a= 7

. 1 2
() 25= 3 atly o (1)

t =L
PtoO a

(il) Mg sind —f = ma
fR=

.el_a
mg sind — —

=ma

mg sind =

& s ma [a=aR]

oo 12
=— +
mg sin R2 ma

I
mgsineza(?er)

[ 2
_ __mgsin® =2 R
m I 5
e
_gsin®
EPTYTEY
1+2MR2
5MR

85



Rotational Motion

gsin® 5gsin®
a: =
1+g 7
5

(i) K.-E4 6 fromp = Mgh
=2mgh

K'EatOfromP_

Q.62 (C)
1 1
- Z (24 = 2
mgh 2Ico+2mV

O

1 (e Vo)1
mgh = > Mk x—=7 +EmV2

RZ
2mgh=mV2 (1 + C)
2gh
2= 20
v 1+C
1 1 2gh  mgh
= = 2= — —_— =
KE=omvi=om1.¢c 1:C
mgh  mgh
“Bing= 101 = 2
K E mgh 2 h
.:_:—mg
coin 1+1 3
2
KE mgh 5 h
-Esolid sphere = == mg
solid sphere 1+g 7
5
1 2 5
Ratlo:E:§:7
=21:28:30
Q.63 (B)

86

Q.64

Q.65
Q.66
Q.67

f.R=Fr=l.a

assumed direction of friction is same so spool

rotates clockwise and thread winds.

(B)

For pure rolling

D AB=BC ¢
Mgsn6—f=Ma
f.R= MR’ a
. - 2 . R
Masin 6 = 3Ma _ 2gsino
gsinf="—"- =73
Now & = L 2gsin6.t?
W= T3
,_ 2x2gsin® L _ 2gsinfL
B~ 3 2 3
VB
o = R
: L .
L V2=Vg2=2gsino. 5 =gLsin®
2gL sin®
VZ=gsinoL + QT
_ 5gLsin®
-3
: - 1 MR?
.. Rotational kinetic energy = 5 >
_ 1 MZ2gsinbL
2 3
(D)
(D)
(A)
2v
v M
2M M
v
v
v




Q.68

Q.69

_EMVZ'FE
2 2

MR?xV? 1
R2

1
M@V)2+ 5 . 2M (V)2
=6MV?2

(©)

Angular momentum conservation (about A)

A

2
5 MRZQ)O: MV R 5V, =20,R
(B)

When ball at maximum height block and ball has equal
velocity So Using momentum conservation

\

m
TIILLLLR LI L Ty
P.=mv
P, =2mv (v, final velocity)
P=P
mv =2mv,

vi=[3)

Using energy conservation

1 1 1 1

T2+ — R — 24 = 2

o lof+ omvi= o o+ 5 2myg +mgh
(I=mR?
v=0R

1 1

2 mv2= 2 2mv 2 + 2mgh

2

v
2_9 — =
vZ—2 2 2gh

1
— 2 — .70
+ > M(2V4) + > Q

Rotational Motion

(D)
Astorque = change in angular momentum
F.At=mv (Linear) ... Q)

g 2
and (sz at= (Angular) ..... (2)

12
Dividing 1 (1) and (2)
,o v e
=l D977
Using S=ut
. . W 6v
Displacement of COM is 5 =ot= (7jt
and x =vt
Sividng 2 = L
ividing %

194 N . TC_€+£ 0
= X= 1 = Coordinate of A will be 12" 2’

Hence (D).

©)

Angular Momentum conservation about C.O.M.

*m

b b b*
2my.o +mv o = [Zm-j-“)J +0

3mvb  mb? 3V
= = 0 On=—

2 2 b

L.M.C. 2mV —mV =2mV’
V'=05V
x= 0.5Vt + 0.5b sin ot

3V

y=0.5coswt where = b

(B)

—>mV, H Cc
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Rotational Motion

L.M.C.mVy=MVg,

AM.C.(A) J=2M Voy
ML? o J
mv X = ET) o) Veow = ™M
ol L Now V. = > 4 9 L_J
& =Veu = | X% WVAToM T ML 27 M
Q.73 (D) Q.76 (C)
J=M.V oy \
S | :
10 VCOM:% — y +w7|_ \
—1 EI 6
B Veou
IM ©
2 8
— mMR%m» + mvR+mvR= = mvR
B 3 3
J Water is at rest w.r.t centre.
= Veom = M
Q.77 (C)
L Ml
2 12 F=2t
6J

L %

e 8 ML _m [ V2 A
TOTML 120 T2 T T 2-f=0
A =Wt(R+T)
Q.74 (C) r 0
v o IdL=I2t(R+r)dt
com 30° 0 0
MV
L=(R+n)t2
Q.78 (D)
J‘E dt = changein angular momentum For rigid body separation between two point remains
same.
ol 2ML%o | V
MVsm30°E: 7 oL ® v, €0s60° = v, cos30°
Q.75 (B) Vi _3v
L 27T TR
J.E =lo
—3 AN
VCOM+(O7L
L2 2
> Vo
L/2
m
B
ﬁ_*/é"l
LML J v,sin30°-v,sin60° | |22
- = - — 2 1
J.2 2 7 0 S ML Oy = r ‘: d
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Vv, —/3x+/3v,

_ _2V, _Vy
- 2d T 2d " d
Vo
(Ddisc: F
Q.79 (B)
B L
2
,,'._ ua
ST T
i 8
[e]e]e |
T
5 4

Thereisno forcein Horizontal direction C.O.M. will
remain constant

oL O]

Quarter circle It is not circle

with Radius %

Q.80 (C)

N

JEE-ADVANCED

MCQ/COMPREHENSION/COLUMN MATCHING
Q.1 (A,B,C)

Sphere is rotating about a diameter

so a=aR

but, R is zero for particles on the diameter.

Q2 (A B,C)

S SN S

\C

Q.3

Q4

Q.5

Rotational Motion

Using perpendicular theorem

=1+, =1,
=L+, L=1
L=1,

so, (I, =1, + L)

(A,B,CD)

|, +13=1=21,=2l,=I
L+1,=1,2,=2l,=I
I,=1,=1,=0,=

(A,D)
(1) For no slipping

pmg cosb > mg sind ......... (D]
For toppling

h
mg sino 52 mg cos0. —

for minimum p (by dividing)
2 2

u‘g: h

a

I""min: h -
[Ans.: a/h]

Iff>mgsin6

umg cos 6 > mgsin 6

(u > tan ©) block will topple before dliding
torque about point A T, =0

mgsin® (%) = mg cosd %
tan 6 = (%)
> 1)

If u>tan 6 (block will slide)

(B.C)

VAN BRANS
I d >l
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Rotational Motion

Q.6

Q.7

Q.8

Q.9

Q.10

90

Ny, +Ng=W

W(d-x)=N, .d

(B, C, D) Q.11
Body isin equilibrium
So 1,4=0

or

F

net =0

(A,B,D)

N

(shifted
normal

| reaction)

NV

Vg
A l Ry

mg

Q.12

Angular momentum is not conserved
(A,B,C)

1
(A) KE= 3 Io?

| dependson m
KE dependson m

Q.13

y-axis
A

Q.14

X-axis

(B) Iyaxis = 2M&

1
K.E. = 5% 2M&w? = Malw?

I, =2(Ma2+mb?)

axis

1
K.E. = E |(,02 — (MaZ +mb2)®2 Q.15

(A,B)
In absence of external force linear momentum and
angular momentum remains const.

(B,C)
External force will act at hinge so linear momentum
of systemwill not remain const. but torque of external

force is zero about hinge so E = const., collision is
elastic so K.E = const.

(A,B,D)

at the moment when ring is placed friction will act
between them due to relative motion. Friction is
internal force between them so angular momentum
of system is conserved.

o, =10,

) 2
mR - [%+mR2]m

(A,C,D)
T is constant(mgr)

(A,CD)

(A,C,D)

wR
C

for pure rolling
V =oR
V,=0

Vo= 2V

(V.=2V)

(A, ©)

If bicycle is accelerating on a horizontal plane then
friction on front wheel will be backward and on rear
wheel it will be in forward direction.

But if bicycle is accelerating down an inclined plane
then friction on rear wheel may be backward or
forward both.



Q.16

Q.17

Q.18

Q.19

Q.20

Q.21

(B,C,D)
After B there is no friction
F.o T or acceleration T

F—f=ma
f.r= TR 2
. - 2 . R

f= % accel eration became doulble

(A,CD)
(8,0
Velocity of COM is zero
v
v
®7R
v
(A,B,D)
(A) ChangeinAngular Mom.
\Z
(0]
=L
= (o -mVR) - (o + mV,R)
=-2mV R
(B) Impulse = Change in momentum
=-2mV R
(C, D)

All points in the body, in plane perpendicular to the
axis of rotation revolve in concentric circles. All
pointslying on circle of same radius have same speed
(and also same magnitude of acceleration) but
different directions of velocity ( also different
directions of acceleration)

Hence there cannot be two points in the given plane
with same velocity or with same acceleration.

As mentioned above, points lying on circle of same
radius have same speed.

Angular speed of body at any instant w.r.t. any point
on body is same by definition.

(A,B,C)
By angular momentum conservation ;

R
L=To=mv E+va:2mR2(u

Q.22

Q.23

Rotational Motion

"y
mg cosf
mg
3
2 MvR = 2mR%»
_3v
®T R

Also as the time of contact ;

m
mgcost — N = v

mv?2

. N=mgcosb — —
d R

when it ascends 0 decreases so cosq increases and v
decreases.

2
.. mgcosh is increasing and

is decreasing
.. we can say N increases as wheel ascends.
(B)

L et the angular speed of disc when the balls reach the
end be . From conservation of angular momentum

1mRzoa:— mR2(9+mR2 o)+mR2 )
2 of 2 2 2
ormw=——

3
©

The angular speed of the disc just after the ballsleave
the disc is

Let the speed of each ball just after they leave the
disc bev.

From conservation of energy
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Rotational Motion

Q.24

Q.25
Q.26

Q.27

Q.28
Q.29

Q.30
Q.31

92

solving we get

_ 2R0)0
T3
NOTE: v = ,/(0R)*+v? ;v,=radia velocity of
the ball
(D)

Workdone by all forces equal

< K_gm ,_ MR%wf
N 212 ve= 9
(D)

(©)
(A)

The free body diagram of plank and discis
Applying Newton's second law

F-f=Ma
.. (1)
f=Ma,
.. (2
FR= 1MR2
..(3
LT
a,
f
f [ «~—T>F
—> a,

from equation 2 and 3

_Ru

2
From congtraint a = a, + Ra.
soa =33

.. (4
Solving we get —Eand —L

gWege & ="M 9T MR

If sphere moves by x the plank moves by L + x. The
from equation (4)

L
L+x=3xorx=—
2

(©

(A)
(©)
(©

Q.32

Q.33

Q.34

Q.35

Q.36

Q.37

Q.38

(B)
By conservation of any momentum,
I w, +I o,=constant.]

(©
2usin®
T="_—~  =36¢%c
g
(A)
0.4 300 0.4 x 160 + 20
A4 X — =04 % +
03 ®
40=64+200
o =-1.2radls
0=zwt=12x36=432rad
(B)
- Direction of velocity of all points
L
on the rod is perpendicular to the plane outwards
(B)

Asangular velocity isuniform so angular acceleration
is zero which means there should be no torque in
vertical direction]

(A)par (B)par (C)p.g (D)par

Since al forces on disc pass through point of contact
with horizontal surface, the angular momentum of disc
about point on ground in contact with disc is
conserved. Also the angular momentum of disc in all
casesis conserved about any point on the line passing
through point of contact and parallel to velocity of
centre of mass.

The K.E. of discisdecreased in al cases due to work
done by friction.

From calculation of velocity of lowest point on disc,
the direction of frictionin case A, B and D istowards
left and in case C istowards right.

The direction of frictional force cannot change in any
given case.

(A)p B)as (C)p (D)qgs

(A) Speed of point P changes with time

(B) Acceleration of point P is equal to X (o =
angular speed of disc and x = OP). The
acceleration is directed from P towards O.

(C) The angle between acceleration of P (constant in
magnitude) and velocity of P changes with time.
Therefore, tangential acceleration of P changes
with time.

(D) The acceleration of lowest point is directed

towards centre of disc and remains constant with time



NUMERICAL VALUE BASED

Q.1

Q.2

Q.3

Q.4

(2]
CM at 0.1

L, =L,
2x05x0.2sn37°

2x4

2+4

=-1x0.5x0.2cos37° + x (0.3)2 ®

0.2 3 0.1 4 8 0.32
2x — +01x — =— x0.
5 5 6 @

wlo

=1.67rad/s ~2rad/s

w=

(7]

Conservation of angular momentum about the fixed
axis.

4600 x 1+ 1 x 80 x 5= (4600 + 80 x 1%) x o,

o, = 32/468

Aw = 0.068

6.8 x 102 =7 x 1072

[5625]
% x15x22x 2= (%X15X22+2X12jm

60 15

§=m:m=§rad/s
1,25 25
K—2><32>< 61 - 2 J=56.25J
(7]

Angular momentum conservation

()25 A

_12v
77
1.2
KE. 2(2 j

Q.5

Q.6

Rotational Motion

KE_EMZ £_7
AKE=Z MV = \KE ~
(5]
Lfina =0
2 R2 R
Linitialzgm o ~MVo
SVy
Wy =——
0 R or
o = Sx Vg
0 —2><(0.05) =5 rad/sec.
[12]
1(1 21 2 1 1
]l —mlT W = =2 — M2
cons. of E= > [12 j 2mv + 2MV
—’
Vv
4 —
m m

cons.of P= O =MV —mv
1 2 V4
consofL:(l2 jw O+MV2

L around initial mid point of stick
Three egs, there unknown (v, V, M)

1 2 2
E: —|W2:p_+p_
2 2m 2M
lw = 22 = /

1 awY (1 1
—w2=| — | | 5=t 5
2 Y4 2m 2M
ﬂ(i+ij
=122 m ™

:|=“(112_”“2j (#i}

/? M
93



Rotational Motion

Q.7

Q.8

Q.9

94

[5]

Let N be the normal force between the stick and the
circle, and let F; be the friction force between the
ground andthe circle (see figure). Then we
immediately see that the friction force between the
stick and thecircleisalso F;, becausethetorquesfrom
the two friction forces on the circle must cancel.

Q.10
Looking at torques on the stick around the point of
contact with the ground, we have Mg cos 6 (L/2) = Q.11
NL, whereM isthemassof thestick and L isitslength.
Therefore, N = (Mg/2) cos 6. Balancing the horizontal
forces on the circlethen givesN sin 6 = F, + F; cos 0.
Sowehave
Nsn® Mgsin6coso
R = 1+cos®  2(1+cosb)
But M = pL, and fromfigure. wehave L = R/tan (6/2).
Using the identity tan (6/2) = sin 6/ (1 + cos 6), We
finaly obtain
1
F = E pg R cos 0.
[25]
Cylinder will topple about right bottom Q.12
|
4_ moR
i |p2 (centrifugal force
: ¥ indiscframe)
h ’n D
—Mmw’R>——m
2 2 M
Dg Q.13
W2> ——
Rh
Dg
Wmin = ﬁ
(6]
3R
f =mg x ? cos 60°

f<uN,
3 32u=6
> =
=16 B
[84]
m, =9gm; m,=42gm; m; =84 gm
[100]
Tl T2

T 1
T

70
X 09 T,
T2
T,=70g+kx .. 0]
T,=40g (i)
T,(03)=T,(06) ... (iii)
= 70g + kx = 80g
kx=10g X =1m
[11]
19 20 12 38-06) N
= X — X—_ = .0 —-—0. —M
©=19"700 ™" 100 ( )
= 3.2 N—-m (anticlockwise)
Tt 32 01 redisec?
= === rad/sec o=, ot
a | 32 (O] 0)0 o
= 10 rad/sec + 0.1 x10 rad/sec  ; = 11 rad/sec.

[50]

1
20x0.1-50x0.03 = E mMR2q,

20N

50N



Q.14

Q.15

Q.16

1
2-150= - x2x(0.1)20

05=001a
so rad / sec? (anticlockwise)

2nd Method

Taking outwords as (+ ive)
T =+ 20 x 30N-cm — 50 x 3 N-cm
=50 N-cm = 0.5 N-m

. MR?
2

T O5N-mx 2
t=la :>oc:T = 2><(O.1)2 kgmz
= 50 rad/s?
[158]

M_ o
160 =80 x 12+ 60 x 12 + EXZ

M
= 200 =? = M =600 kg

e

Q ~ @)

. _ 0x60x60x—1+80x1 _ 20
c 60-+80+600 200

| =1+ Mx?=1_=160-200 x (0.1)> = 158 kg m?

=0.1m

[55]

2 r2
mr m 2
_ —+m(2r
| S_—+{ 2 ( )j|x6

mr2 = 55

T2
[

Q.17

Q.18

Rotational Motion

I
j®)
o
1 o
| %
|
|£
AN
+
| %
| |

I
I
o
Py
Q
3
N

r| may be ‘/\'
shifted parallel 1™,

r 79 10/4
_X 37° X

L

-Y

10
, Y=tan37° x+ —~

Y 4

Alw

X+

~6

_,
N

m
mvr =10 x 6 x 2 = 120 kg m?/ sec

€

L

[27]

v= JaR

1 1 2
= 24 = — 2 2 = —
2mv+2x5mR(o mg (h—2R)

7
—\2 = _
=10V =g(h-2R)

7
109R=9(-2R)

h-ﬁ-27><10
T 10 7



Rotational Motion

Q.19 [5]
F+f=ma
FR-fR=1aR
P
an
of
= —MmMa
F 6
6F
L a=—_—
5M
Q.20 [155]

2 7.8 (7 146R2(5)2
5 (7.8) (57 + 5 (4OR? | o

1
5 x25x129=155]

KVPY
PREVIOUS YEAR'S
Ql (O

By using parallel axis theorem, | :1711mr2
Q2 (A

R

T = F[E) +FR + 2FR = 35FR

Q3 (O

Apply conservation of linear momentum
mv =(m+ M)y,

mv SindR = @MRZ + msz ©,

mv[h—R]Rz(ZM +5M)@0R2
R 5

(2m +5|v|)m

5 R’

(m+M) (h—R)o,R=

96

Q.4

Q.5

Q.6

h_10m+7M™
R 5(m+M)
(A)
2
mgh " +12mR2V—2
2 25 R
mgh:lmv2
10

v= [1ogh
7

(A)
2 + S System lie above edge of 1.

M L
~y-M[=-y|=0
2V (2 yj

yzg

Now, 1 + 2 + S centre of mass will lie above the table

2 2 3 2
X _AaL _8
2 3 7 15
I 20 i
L—t7
' Table x—LIZé '
—

[/

..(i)

where v is the velocity of centre of mass.



Q.7

After impulse rod get angular velocity o
Angular impulse = o

2
IxL = :m(2L) <o
12
(i)
3 mLo
3
3J
w=—
mL
) J
from equation (1); v = m
N 1 1 5
Kinetic energy = KE = Emv2+Elw

1 P 1 mx4l? oF
—M—+=x X——
2 m?2 2 12 @ miR

P3P
2m  24m
487 27
:> —_—
24m m

(B)
If perfect rolling (solid cylinder P)
According to energy conservation law

2
1 5 1(Vp
= —mvp+—I| —
mgh = 2 MVe Z(RJ

Here,
| - moment of intertia, R — Radius

I_mR2
2
0=Ye
R
1 1 mR? v3
mgh= 5MVe 5o me
1 o[, 11 1 _, 3
= —mvp|l+=|==mvpx—
mgh > P|: 2} 5 VPXS
4 2
mgh: ngP
(i)

If sliding without friction
(solid cylinder Q)
According to energy conservation law

h—lmv2
mg - 2 Q

Q.8

Q.9

Rotational Motion

= v5=2gh

(i)
from equation (i) and (ii)

Yo_ |3
Vp 2
(©)

Initial sphere is slipping and finally it start rolling
During its motion t about point of contact is zero.

Angular momentum of sphere about point of
contact remain conserved.

(0] '

Slipping Rolling
Iw=(+MR? o’
EMRzmz(gMR2+MR2j(D'

5 5
, 20
0 =—

7

(A)

Hinged point
LATMANA R

\Z?:,\CM of system

_______

When CM of system and Hinged point lie on oneline
then only system can remain in equilibrium in given
position.

AB =/ cos6

AP:£<:os9
2 2

cos9 = E = AB= APcosg
2 AP 2

1600 = L cos? 0
2 2
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Rotational Motion

20086:1+cose o = 2mR
2 27 (mg+m,)L
4cosH =1 + cos O
3cosb =1 Q.l3 (D)
cosd :} - 0= Cogl(lj I, = 4.25 kg-n’ l,= 1.8 kg-nv
3 3 N, = 15rps N, = 25rps
Q.10 (O
P
Pol.,
Their axis of rotation is common.
Angular momentum conservation | o, — ,l, = (I, +
——>V )o
00 Vo 2n(4.25) N, — 2 (1.8) N, = (4.25 + 1.80) N (2m)
(4.25 x 15— 1.8 x 25) = (6.05) N
P _ —
P—PO——°><V 63.75-45=6.05N
Vo N =3rev/s.
..... Q) u A
PV =RT Q. (")
from (1) and (2)
RT R Y
— = - — X
V oV, A
T= F’OV POVZ _ & _V_2 1
TR RV, ~ R Vo 4
_ M[l_i} X
R 0
Q.11 (O
Pole star is a visible star preferably a prominent one I, +mR+y?2=1, (1)
that is approximately aligned with the axis of rotation I+ m(R-y)2= N 2
of earth. from (1) & (2)
=1 =m[R-y}~(R+Y)]
Q12 (B) l,—1,=m(2R) (- 2y) -(3)
I, +mR+x)?=1, ..(4)
I, +m(R=x)*=1, ..(5)
, from (4) & (5)
. . (I,=1,) =m[(R=x)*— (R + x)7]
I,—1,=m[(2R) (-2x)] ...(6)

@@ Gy + (o)
) = (I, =17+ (1,=1,)? = (m? x 4R? X 4(x* + y?)

distance of CM from O = [x? +?
Using concept of COM Y

mr.= m.r 1 2 2
Sk = =S~ 132+ (1~
rl+r2:2R 4mR\/(l 3) +(1p=1y)
&+1}r2:2R Q.15 (A)
my

2mR
= m+m,

Lsing,=r,[R<<L]

98



Q.16

Q.17

6, = 30°, 6, = 60°
using Lami theorem on m,

F m,g

sin(n-6,) sin(n-a)

F mg
sinf, sina
using Lami theorem on m,

(D)

F m,g

sin(n-6,) sin(n-a)

F_Mmg )
snB, sno

using (1) & (2)

m, sin0, =m,sino,

m, x sin30° = m, sin 60°

M _ 3-17
m2

(B)

2
1 1 V . .
> mv?+ > mR? (E] = mgh {Usingconsavationof energy}

V2 ov?
m| —+— [=mgh
2 2

Nlo

5
m1g 2

CM of triangular plate is on the median. If we put a
masssay m, on C it will producetorque about A which
balance the torque produce mg about A. Thus plate
will can bein equilibrium position

m,g x 4 cos 37 =mg Xy

4
mlgx4xg:mgxy

=m X xE
m=mxy 16

Rotational Motion

=

y<3 so—<1
m <m

m, < 540¢g

from given option Ans. (A)

(A)

B Horizontal

For one arm to remain horizontal the net torque about
O must be zero (in the position shown in the figure)
for this OP = 0OQ

14
:>OQ:§ coso

from figure
AE=AC+CE
= AE =/ cos0 + OQ

L o o
—2— CO 2CO

oL
= CO! —3

hence 6 =cos™(1/3)
correct Answer is (A)

(D)

-? - [p—
4431
121, +M(apy
=Sma
Somvr =1
5)
mv| —
3 _ mv
= ©% 8y T 2Ma
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Rotational Motion

Q.20

(M +20)g£: mgR

2

20
_ . M=—""_—-1483k
M+20=+2m; N g

Q.21 (B)

Q.22 (C)

/1 h
= V= % =10 m/s

On elastic collision with block velocity will
interchange speed of block after collision is 10 my/s.

Q.23 (B)

By conservation of angular momentum

/—\

[a]

—_—
— 2m/s

—

before after

L, =L,
about feet on fixed ground

15

2
_mezzww

o=2radls

Q.24 (B)
The frictional force on the tyres is an external force
and isbeing provided by the road.
Other options i.e. front tyre, rear tyre and brakes
comprisetheinternal partsof bicyclethusforcesapplied

by them will be internal only.
100

Q.25 (D)
Mass of bottle = mO
Length of bottle =L
base Area=A =pr2
density of shampoo =r
mass of shampoo = rfAL

Center of mass of system

L fL

m, +pfAL

for critical angular displacement, mg will pass through
tilted side.

Vi

r

Fromthe diagramtan 6 = ;

tan6 = r(m, +pALf)
E(m0 +pALf?)

af=0& f=1,tipping angle‘0’ will be same. for very
smal vaues of ‘f’, we can neglect f2 terms

r (m, +pALf)

L
- m,

=tanb=



0= tant I (my+pALf)
L

m,

2
So if f increases 0 will increase.

JEE-MAIN
PREVIOUS YEAR'S

Q1 (1) 04

1 1 2
Mg (/sin6) = EMvo2 5% gMvo2

7v?
~ 10gsin®

Mg (/sin0) = MV2 . ¢

Qz (1

axis of rotation

G—6

G—=D

2 2
l=2x gma12+2[gmr’:12 + mbz}

4 4 8
| = gma2+ gma2+2ma2= gma2+mb2

Q3 (1

. Q-5
mg
mg—T =ma

TR=la
a=Ra

Rotational Motion

¢ r.3
Ihaagon_slAB_M_ 12x36 36 4

6 [24x24 24x24 3
T 100|12x 36 36 4

1

= = 2
100 [80] = 0.8 kgm

8]

Ratio of time period
L

T, 8

2n

o _1

2r 8

®,

O _

®, -
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Rotational Motion

Q6 (1

Q7 (3
Moment of inertia of point mass
= mass x (Perpendicular distance from axis)

Moment of Inertia

1Y 1Y
IRUNSNES Y

= 3ml?
Q.8 [20]
T FR_2F
| mR?*/2 mR
o= _2x200 _ 10rad/ s
20x(0.2)
o’ = o, +20A0
50)2= 0%+ (10) A® AD = @
( ) - ( ) = - 20
AO =125 rad
15 _
No. of revolution = 2y ~ 20 revolution

Q9 [82]

102

Q.10

Q.11

Q.12

Q.13

Component along AC
= 100 cos 35°N
=100 x 0.819 N

=819N ~82N

T=TxF
T =(2i) - (2i +3] +4k) = -3j -4k
& F=4i+3j+4k

i j k
. _ = _10 -3 4
T=TxF =

4 3 4

= i(-12+12) - j(0+16) + k(0 +12)
= _16i +12k

7 =16 +122 =20

(3]
i i 2 .
_ gsmle =gS|n19=§gsm6
1+— 1+-
mR 2
b=3

(4)

We know, [ =m (F xV)

with respect to A, we always get direction of | along
+ve z-axisand also constant magnitude as mvr. But with

respect to B, we get constant magnitude but
continuously changing direction.

[728]

o, +0,
> t
Let number of revolutions be N

900+ 2460
6ox2 | <%

We know, 0 :(

so2nN =2¢n [



Q.14

Q.15

Q.16

Q.17

Q.18

N =728

[4]
Mgsine R = (mk, + mR)) a
_ gsin®
_ Rgsin6 T 2
“erRe TR 1?

gsne

for least time, k should be Ieast & we know K is least
for solid sphere.

(3)
gsino
T T 7 2 7
_% 2><1><7_056
T a 25
(3)

Using conservation of angular momentum
(Mr2)o = (Mr2 + 2mr2)’
Mo
~ M+2m

T N“‘*
g At
60°

Let's take solid cylinder is in equilibrium

T +f =mg sin60 ()]
TR-fR=0 (i)
Solving we get

_ mgsin®

- 2

But limiting friction < required friction

T=f
req

Q.19
Q.20
Q.21
Q.22
Q.23
Q.24
Q.25
Q.26
Q.27
Q.28
Q.29
Q.30
Q.31
Q.32

Q.33

Q.34

Rotational Motion

mgsin 60°
2
". Hence cylinder will not remain in equilibrium
Hence f = kinetic
= ukN
= g mgcos 60°
_ g
-5

pmgcos60° <

[200]
(3]
(2
[2]
(1)
(2)
[4]
(4)
(3)
[9]
(3)
(4)
[52]
(2)
(3)

5
M= 15kg,r-05md-§
|—2(EMrZ+Md2j—1go5k 2
=45 =19.05 kgm
(4)
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Rotational Motion I

Q.35 [6] Q.3 ©
L, remains cons. in magnitude and direction but L,
changesits direction continously hence L, is variable

L, (varies direction)

- 1, 1mie’ Q4 [3]
by energy conservation mg/ = > lo? = 5 3

69

> 0=,—
l

Speed v = or = ol = /6g/
V=+6x10x.6=6m/s

JEE-ADVANCED
PREVIOUS YEAR'S
Q1  [0004]
2-f, =2a=0.6 = f,=1.4
a

=la = (f,f))R=MR?
14-f, =Ma=06

stick

2N

f, _(@m(R? 3 . .. 3
A 0_T—ZmR_mR[s—z]
t

dI d

fy
1=0— = (I +1y)

dt dt -

13 R
2

P
f,=0.8 = u(2)= 10 x2
P=4

Q2 (B)

aSIrodzcom =71 = V(:II_S(Iinsect)

d 2 dr
— _ 2r— | —
BN t(mr)_m@[ “j—ZmrmV

=2m(vt)ov = toc t
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Q.5

R® +m[(2R)? +R?]

3 2
l,= 5 (4m) 2Ry~

= 24 MR? — ——mR?
_3—7mR2
2
37
b _2 37
=1z .2l 3
o 13 =93
2

At 45° P& Q both land in unshaded region.

The general motion of arigid body can be considered
to be a combination of (i) a motion of its centre of
mass about an axis, and (ii) its motion about an
instantaneous axis passing through the centre of mass.
These axes need not be stationary. Consider, for
example, a thin uniform disc welded (rigidly fixed)
horizontally at itsrim to amassless stick, as shownin
thefigure. When the disc-stick systemisrotated about
the origin on a horizontal frictionless plane with
angular speed o , themotion at any instant can be taken
asacombination of (i) arotation of the centre of mass
of the disc about the z-axis, and (ii) a rotation of the
disc through an instantaneous vertical axis passing
through its centre of mass (asisseen from the changed
orientation of points P and Q). Both these motions
have the same angular speed o in this case.

Now consider two similar systems as shown in the
figure: Case (@) the disc with its face vertical and
parale to x-z plane; case (b) the disc with its face
making an angle of 45° with x-y planeand itshorizontal
diameter parallel to x-axis. In both the cases, the disc
iswelded at point P, and the systems are rotated with
constant angular speed » about the z-axis.

Z y4
\Aj  Q \?/40) Q
() ’ 450
> [
X X
Case () Case (b)

Q.6

Q.7

Q.8

Rotational Motion

(A)
Consider case (a)
o Q
(inside B' A (out of B A
paper) paper)
P
att=0 att=T/4
at=T/2at=3T/4
Q
(outside) B ° A(inside)
P
A B

Hence axis is vertical.
For case (b)

%

(D)

Angular Velocity of rigid body about any axes which
areparallel to each other issame. So angular velocity
iso.

(A,B)

V,=30R]
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Rotational Motion

_ Amvr
MR?

oR . oR -
Vp(3‘”R‘T cos60°) | + - Sin60j

11oR: +30R: ) 1
= i+ I 4)(5x1079)(9) —
n . e )()[4)
AN 45x1072x ©
IF,>IQ 4
gsine o =4 radls
=1 1T /MD2
1+I/MR 012 [2]
Hencez;\3<a0
t >t
\7p<3 FRae
Andasw =V/R
SOCOP<0)Q

a

Q.10 [9]
Angular momentum conservation

O

Irdt jSFsin30°R dt
- 0

o= I— = I
I10)1 = I2('02
MR o, = [MR? + 2(mr + mr) | 3.(0.5) (0.5) (0.5) (1)
> 1 2 = > =2radls
1.5(0.5)
50(0.4)" 2
=7 x10
2 Q.13 [7]
50(0.4)° Q.14 (D)
= 04, 2{(6.25)(0.2* +0.2%) o,
40=[4+1 0, = w, = 8 radls Q15 [6]
Q11 [4] Q.16 (D)
Applying conservation of angular momentum. At equilibrium, reaction of thewall on the stick cannot
be equal in magnitude to the reaction of the floor on
T v the stick.
ms
Q17 (A,B,D)
F(t)=oc t% + Bt?]
dr fal ~
V=— =3t + 24t
pm pt]
l'm
\" 10 -

:(r)t:1=§| +5)

=0 (V),_, =101 +10]

2mvr —
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Q.18

Q.19

Q.20

(P)_,=T+]
L=Fxp= g)k
E-m¥

dt Q.21
(F)H:Z' + Q.22
f:fxﬁ:—fgﬂﬁ Q23

3
Hence, (a, b, d)
(AD)
Asthe discs are rolling without slipping
1, 1 a)
S.o'x5a=wa =>w =€
Angular momentum of system about CM through an
axisalongrodis
_ma’ 4m(2a)”  17ma?
2 2 2
/( ma4
2a
5] 7 a \
. Q.24

I-I|ence, (B) or (a, b)
(A, or AB)
(BCD)

.y

Y
Path of A isellipse
(B) torgque about point of contact

l .
mg—sind =1
92 a

hence torque oc sin 6

Rotational Motion

(©) Yom = %(1— cos6)

(D) midpoint will fall vertically downwards
(Bonus)

(A)

(B.C)

_ ke
2

d
F = — kr (towards centre) [F =

At r=R,
mv? .
kR = R [Centripetal force]

2
V= ki:\/ER
\J m m
L=m\/ER2
m

(AC)
F=(ati+B])
a=1p=1

[Att=0,v=0, =0 ]

F=ti+]
dv A
m—=ti+]j
d
On integrating
2

mV:%(f+t]) [m=1kg]

ﬁ_ﬁmj [F=0 a t=0]
a2 - -

On integrating

— _ = 1'-\ 1’: o ~
At t=Less, (5P <[4 ]J<(i+)
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Rotational Motion

Q.25

Q.26

108

{1;&} -
5 T3l =10

1 1
S=—1+—]

6 2

2 2

. 1 1 J10
Sl= — + | — -
1= (GJ [zj -5
[0.75m]

_gsin®

|
1+—C
MR?

~gsin®
ing_T

2gsin®
aﬁisc:g—

h 1(gsin9] 2 4h 16h
sng 2\ 2 gsin“o 39
h (ngme
sno_ 2 gsin® 6
/16 an _2- Jé

ﬁ{%—z}zz—\/ﬁ

(235 _ 5
(+-25) 2

Jh= =h===0.75m

AW

(A)
(P) F(t)=ati +pg
r(t)

dt
v _y
at

<l
Q.

= o +pj {congtant}

ol
Il

P=mvV (remain constant)

k= %mv2 (remain constant)

— U — constant
E=K+U

o
dt

I
Al
X
ol
Il
o

L = constant
Q r—occos(o)t) +Bsn(mt)1

\7:%:—amsin(mt)f+ﬁmcos(mt)i
é:%z—ow) cos(ot)i —po’sin(ot)]
= [acos(cot) +[33m(wt)]]
a=-of

Uocr?

r= \/az cos®(ot) +B?sin®(ot)
ris afunction of time (t)

U depends on r hence it will change with time
Total energy remain constant because force is cen-

tral.
(R) F(t)=a(cosoti +sin(wt)j)

dr(t) _

v(t)=— of ~esin(ot)i +ocos(ot)] |

V| = aeo (Speed remains constant)

a= ()= W _ o[ o2 cos(ot)i - o?sin(ot)]]

dt

- _awz[cos(o)t)f +Sin(c0t)]]

%:

|F|=a (remain constant)

Forceiscentral in nature and distance from fixed point

is constant.
Potential energy remains constant

Kinetic energy is also constant (speed is constant)



Q.27

p

F=ati +2t3
(9 T=ati+ot]

ar

a=— =B
p Bj { constant}

1
E= k+U :Emm2 (remain constant)

(A,CD)

We can treat contact point as hinged.
Applying work energy theorem
Wg=AK.E.

¢ 1(me)
M4 =210 3

o= ﬂ

Radial acceleration of C.M. of rod = (—

CM.

/2

<],

I7777777777777

Using T = | a about contact point

mg! . 02
Tgsm60°: m3 a
Sa=3

4y g

Net vertical acceleration of C.M. of rod
a,=a cos 60° + g cos 30°

(2t

= ati +Bt] (speed of particle depends on ‘)

Q.28

Q.29

Q.30

Rotational Motion

4 L\ 2)\ 2
_%,9 15
8 16 16

Applying F_, = main vertical direction on rod as sys-
tem

‘'mg—N=ma =1 N
a, i
¥
N—m mg
AT
(A)

For 0., the football is about to roll, then N,=0 and
al forces(Mgand N,) must passthrough contact point

r
. €os (900 )=

"R
(B)
For no dlipping at the ground,
V__ =oR (R isradius of roller)

it
Oe\nlg ocity of scale=(V ,+tor) [risradiusof axle]
Given,V_ . -t=50cm

.. Distance moved by scale = (V

. r
=snb,, =—
R

center+(’0r)t

:(Vm +th:3v_mt:75cm
R 2

Therefore relative displacement (with respect to

centre of roller) is (75 —50) cm = 25 cm

[25.60]

N, — X — N,
1 50 1 —40 cm—»|
| < *
f —f,
—90cm ——
+ 10cm
Mg
Initially
4M
N, +N, =Mg N, = Tg
5Mg
(tn =0)N,(50) N, = 9
aboutcentre
5Nl=4N2
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Rotational Motion

by the angular momentum conservation about the

fr =Ny f, =nsN; suspension point.
f, =0.32N, f, =04N, me2
S E— e mvx = +mx? |o
f, =0.32N, f, =04N,
Suppose x =distance of left finger from centre when mvx 2VX
right finger starts moving 0= meZ 713
(Tnzo)about centre = I\Il)(L:N2(40) 3 +mx
f, =f_ = 032N, =0.40N, .
()
4N,=5N, For maximum ® = v 0
4N
Nyx, = : (40) . ¢
5 S Xy = T
x =32 3

Now X_=distance when right finger stops and left \VJ
finger starts moving Sothe ©= z\/é
(t,=0)about centre = N x =N.(x.)

f =f., = 04N, =0.32N, Q.32 (BD)
5N, =4N,
N Q.33 (ABO)
—2(32) = N x,
5 Q.34 [49]
128
Xg :?:25.6cm Q.35 (ABD)
Q.31 (A,CD)
Q.36 [0.18]
t lo Q.37 [0.16]

Me— Y,
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